精英家教网 > 高中数学 > 题目详情
BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,则图中共有直角三角形的个数是(  )
A.8B.7C.6D.5
A

试题分析:因为AP⊥平面ABC,BC?平面ABC,所以PA⊥BC,
又PD⊥BC于D,连接AD,PD∩PA=A,所以BC⊥平面PAD,又AD?平面PAD,所以BC⊥AD;
又BC是Rt△ABC的斜边,所以∠BAC为直角,所以图中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故答案为:8。
点评:本题着重考查了线面垂直性质与判定定理的应用,考查细心分析问题能力,解决问题的能力,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,平面,的中点.

(1)求证:∥平面
(2)求二面角的余弦值;
(3)设的中点为,问:在矩形内是否存在点,使得平面.若存在,求出点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)用斜二测画法画底面半径为2 cm,高为3 cm的圆锥的直观图.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,ABC—A1B1C1是正方体,E、F分别是AD、DD1的中点,则面EFC1B和面BCC1所成二面角的正切值等于(  )

A.       B.         C.       D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且,则(  )

(A)EF与GH互相平行
(B)EF与GH异面
(C)EF与GH的交点M可能在直线AC上,也可能不在直线AC上
(D)EF与GH的交点M一定在直线AC上

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是一个平面,则下列命题正确的是(  )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知正方体ABCD-A1B1C1D1,E、F分别是平面A1B1C1D1和ADD1A1的中心,则EF和CD所成的角是(  ).
A.60° B.45°C.30°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线m、n与平面α、β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;
③若m⊥α,m∥β,则α⊥β.其中正确命题的个数是(    )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为三条不同的直线,为一个平面,下列命题中不正确的是(   )
A.若,则相交
B.若
C.若 // // ,则
D.若// ,则//

查看答案和解析>>

同步练习册答案