精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\frac{2x+1}{x+a}(a≠\frac{1}{2})$的图象与它的反函数的图象重合,则实数a-2.

分析 由y=$\frac{2x+1}{x+a}$$(a≠\frac{1}{2})$,解得x=$\frac{ya-1}{2-y}$(y≠2),把x与y互换可得:y=$\frac{-ay+1}{x-2}$,根据函数$f(x)=\frac{2x+1}{x+a}(a≠\frac{1}{2})$的图象与它的反函数的图象重合,即可得出a.

解答 解:由y=$\frac{2x+1}{x+a}$$(a≠\frac{1}{2})$,解得x=$\frac{ya-1}{2-y}$(y≠2),把x与y互换可得:y=$\frac{-ax+1}{x-2}$,
∵函数$f(x)=\frac{2x+1}{x+a}(a≠\frac{1}{2})$的图象与它的反函数的图象重合,∴a=-2.
故答案为:-2.

点评 本题考查了互为反函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.等差数列{an}中,已知a1-a4-a8-a12+a15=2,则此数列的前15项和S15等于(  )
A.-30B.15C.-60D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直.
(1)证明:BC∥平面PDA;
(2)证明:BC⊥PD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=(x-2)a+1(a∈R)恒过定点(3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C是与两个定点A(1,0),B(4,0)的距离比为$\frac{1}{2}$的动点的轨迹.
(1)求曲线C的方程;
(2)求曲线C上的点到直线l:x-y+3=0的距离d的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆心为(2,-3)半径为5的圆的一般方程为x2+y2-4x+6y-12=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l1:mx-y=0,l2:x+my-m-2=0.
(1)求证:对m∈R,l1与l2的交点P在一个定圆上;
(2)若l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,求当m在实数范围内取值时,△PP1P2的面积的最大值及对应的m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$y=\sqrt{-3t+12}+\sqrt{t}$的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,∠ABC=60°,PA=AB=BC,AD=$\frac{2\sqrt{3}}{3}$AB,E是PC的中点.
证明:PD⊥平面ABE.

查看答案和解析>>

同步练习册答案