精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a0=2,a1=3,a2=6,且对n≥3时,有an=(n+4)an-1-4nan-2+(4n-8)an-3
(Ⅰ)设数列{bn}满足bn=an-nan-1,n∈N*,证明数列{bn+1-2bn}为等比数列,并求数列{bn}的通项公式;
(Ⅱ)记n×(n-1)×…×2×1=n!,求数列{nan}的前n项和Sn
(Ⅰ) 证明:由条件,得an-nan-1=4[an-1-(n-1)an-2]-4[an-2-(n-2)an-3],
则an+1-(n+1)an=4[an-nan-1]-4[an-1-(n-1)an-2].…2分
即bn+1=4bn-4bn-1.又b1=1,b2=0,所以bn+1-2bn=2(bn-2bn-1),b2-2b1=-2≠0.
所以{bn+1-2bn}是首项为-2,公比为2的等比数列. …4分b2-2b1=-2,所以bn+1-2bn=2n-1(b2-2b1)=-2n
两边同除以2n+1,可得
bn+1
2n+1
-
bn
2n
=-
1
2
.…6分
于是{
bn
2n
}
为以
1
2
首项,-
1
2
为公差的等差数列.
所以
bn
2n
=
b1
2
-
1
2
(n-1),得bn=2n(1-
n
2
)
.…8分
(Ⅱ)an-2n=nan-1-n2n-1=n(an-1-2n-1),令cn=an-2n,则cn=ncn-1
而c1=1,∴cn=n(n-1)•…•2•1•c1=n(n-1)•…•2•1.
∴an=n(n-1)•…•2•1+2n. …12分nan=n•n•(n-1)•…•2•1+n2n=(n+1)!-n!+n•2n
∴Sn=(2!-1!)+(3!-2!)+…+(n+1)!-n!+(1×2+2×22+…+n×2n).…14分
令Tn=1×2+2×22+…+n×2n,①
则2Tn=1×22+2×23+…+(n-1)×2n+n×2n+1.②
①-②,得-Tn=2+22+…+2n-n×2n+1,Tn=(n-1)2n+1+2.
S^=(n+1)!+(n-1)2n+1+1.…16分.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案