精英家教网 > 高中数学 > 题目详情

【题目】在直角梯形(如图1),为线段中点.沿折起,使平面平面,得到几何体(如图2.

1)求证:平面

2)求与平面所成角的正弦值.

【答案】1)证明见解析;(2

【解析】

1)通过计算结合勾股定理的逆定理可以证明,再根据面面垂直的性质定理进行证明即可;

2)法一、

的中点连接,根据,结合三棱锥的体积公式进行求解即可;

法二、

的中点连接,由题设可知为等腰直角三角形,所以,连接,因为分别为的中点,所以,由(1)可知,故以所在直线为轴、轴、轴建立空间直角坐标系,如图所示.运用向量法求解即可.

解:(1)由题设可知

又∵平面平面,平面平面

.

2)法一、等体积法

的中点连接,由题设可知为等腰直角三角形,所以

到面的距离

所以.

法二、向量法

的中点连接,由题设可知为等腰直角三角形,所以,连接,因为分别为的中点,所以,由(1)可知,故以所在直线为轴、轴、轴建立空间直角坐标系,如图所示.

∴面的一个法向量

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面垂直直角梯形ABPE所在的平面于直线AB,且ABBP2ADAE1AEAB,且AEBP.

1)求平面PCD与平面ABPE所成的二面角的余弦值;

2)在线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)设,证明:在区间内存在唯一的零点;

2)设,若对任意,有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱中,的中点,点在侧棱上,平面

(1) 证明:的中点;

(2) ,四边形为边长为4正方形,四边形为矩形,且异面直线所成的角为,求该三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着银行业的不断发展,市场竞争越来越激烈,顾客对银行服务质量的要求越来越高,银行为了提高柜员员工的服务意识,加强评价管理,工作中让顾客对服务作出评价,评价分为满意、基本满意、不满意三种.某银行为了比较顾客对男女柜员员工满意度评价的差异,在下属的四个分行中随机抽出40人(男女各半)进行分析比较.对40人一月中的顾客评价“不满意”的次数进行了统计,按男、女分为两组,再将每组柜员员工的月“不满意”次数分为5组:,得到如下频数分布表.

分组

女柜员

2

3

8

5

2

男柜员

1

3

9

4

3

1)在答题卡所给的坐标系中分别画出男、女柜员员工的频率分布直方图;分别求出男、女柜员员工的月平均“不满意”次数的估计值,试根据估计值比较男、女柜员员工的满意度谁高?

2)在抽取的40名柜员员工中:从“不满意”次数不少于20的员工中随机抽取3人,并用X表示随机抽取的3人中女柜员工的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性,并证明有且仅有两个零点;

(Ⅱ)设的一个零点,证明曲线在点处的切线也是曲线的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午假期即将到来,永辉超市举办浓情端午高考加油有奖促销活动,凡持高考准考证考生及家长在端年节期间消费每超过600元(含600元),均可抽奖一次,抽奖箱里有10个形状、大小完全相同的小球(其中红球有3个,黑球有7个),抽奖方案设置两种,顾客自行选择其中的一种方案.

方案一:

从抽奖箱中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:

从抽奖箱中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200.每次摸取1球,连摸3次,每摸到1

1)若小南、小开均分别消费了600元,且均选择抽奖方案一,试求他们均享受免单优惠的概率;

2)若小杰消费恰好满1000元,试比较说明小杰选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东西向的铁路上有两个道口,铁路两侧的公路分布如图,位于的南偏西,且位于的南偏东方向,位于的正北方向,,处一辆救护车欲通过道口前往处的医院送病人,发现北偏东方向的处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要分钟,救护车和火车的速度均为.

1)判断救护车通过道口是否会受火车影响,并说明理由;

2)为了尽快将病人送到医院,救护车应选择中的哪个道口?通过计算说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个内角所对的边分别为,设.

1)若,求的夹角

2)若,求周长的最大值.

查看答案和解析>>

同步练习册答案