精英家教网 > 高中数学 > 题目详情
18.数列{an}的前n项和为Sn,a1=2,an+1=Sn+n.
(1)写出a2,a3,a4的值,并求{an}的通项公式;
(2)正项等差数列{bn}的前n项和为Tn,且T3=9,并满足a1+b1,a2+b2,a3+$\frac{1}{2}$b3,成等比数列.
(i)求数列{bn}的通项公式
(ii)设Bn=$\frac{1}{{b}_{1}^{2}}$+$\frac{1}{{b}_{2}^{2}}$+…+$\frac{1}{{b}_{n}^{2}}$,试确定Bn与$\frac{3}{4}$的大小关系,并给出证明.

分析 (1)由a1=2,an+1=Sn+n,可得a2=a1+1=3,同理可得a3=7,a4=15.当n≥2时,an=Sn-1+(n-1),可得an+1-an=an+1,变形为an+1+1=2(an+1),即可得出.
(2)(i)设正项等差数列{bn}的为d>0,由T3=9,可得3b2=9,解得b2.由于a1+b1,a2+b2,a3+$\frac{1}{2}$b3,成等比数列,可得$({a}_{2}+{b}_{2})^{2}$=(a1+b1)$({a}_{3}+\frac{1}{2}{b}_{3})$,(3+3)2=(2+3-d)$[7+\frac{1}{2}×(3+d)]$,代入解出即可得出d.
(ii)$\frac{1}{{b}_{n}^{2}}$=$\frac{1}{(n+1)^{2}}$<$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.利用“裂项求和”与不等式的性质即可证明.

解答 解:(1)∵a1=2,an+1=Sn+n,可得a2=a1+1=3,同理可得a3=7,a4=15.
当n≥2时,an=Sn-1+(n-1),∴an+1-an=an+1,变形为an+1+1=2(an+1),
∴当n≥2时,数列{an+1}是等比数列,首项为4,公比为2.
∴an+1=4•2n-2
化为an=2n-1.
∴an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n}-1,n≥2}\end{array}\right.$.
(2)(i)设正项等差数列{bn}的为d>0.
∵T3=9,∴$\frac{3({b}_{1}+{b}_{3})}{2}$=3b2=9,解得b2=3.
∵a1+b1,a2+b2,a3+$\frac{1}{2}$b3,成等比数列,
∴$({a}_{2}+{b}_{2})^{2}$=(a1+b1)$({a}_{3}+\frac{1}{2}{b}_{3})$,
∴(3+3)2=(2+3-d)$[7+\frac{1}{2}×(3+d)]$,
化为d2+12d-13=0,
解得d=1或d=-13(舍去).
∴bn=b2+(n-2)=3+n-2=n+1.
(ii)$\frac{1}{{b}_{n}^{2}}$=$\frac{1}{(n+1)^{2}}$<$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴Bn=$\frac{1}{{b}_{1}^{2}}$+$\frac{1}{{b}_{2}^{2}}$+…+$\frac{1}{{b}_{n}^{2}}$<$\frac{1}{2}$$[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$$<\frac{3}{4}$,
∴Bn<$\frac{3}{4}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推关系的应用、“裂项求和”方法、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.一个正四棱台的斜高是12cm,侧棱长是13cm,侧面积是720cm2.求它的上、下底面的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)满足f(-x)=f(x),且f(x+2)=f(x)+f(2),当x∈[0,1]时,f(x)=x,那么在区间[-1,3]内,关于x的方程f(x)=kx+k+1(k∈R)且k≠-1恰有4个不同的根,则k的取值范围是($-\frac{1}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.α、β均为锐角,sin2α+sinβcosβ=1,则$\sqrt{1+sin2β}$+$\sqrt{1-cos2α}$的最大值为$\sqrt{3+\sqrt{10}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正实数x、y满足y>2x,则$\frac{{{y^2}-2xy+{x^2}}}{{xy-2{x^2}}}$最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO,PF2分别交双曲线C左、右支于另一点M,N,|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{7}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex
(Ⅰ)证明:当x≠0时,(1-x)f(x)<1;
(Ⅱ)证明:当a≠b时,$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆O:x2+y2=1,点P(-1,2),过点P作圆O的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i(i为虚数单位),则z2=(  )
A.-2+3iB.-2-3iC.2+3iD.2-3i

查看答案和解析>>

同步练习册答案