精英家教网 > 高中数学 > 题目详情
10.不等式${({\frac{1}{3}})^{x-1}}$≤81的解集为[-3,+∞)..

分析 将不等式化为以3为底的指数不等式,利用指数函数的单调性得到指数间的不等关系,求出x.

解答 解:不等式${({\frac{1}{3}})^{x-1}}$≤81等价于31-x≤34,所以1-x≤4即x≥-3;
故答案为:[-3,+∞).

点评 本题考查了指数不等式的解法;关键是利用指数函数的性质解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an},a1=2,点$({\frac{1}{2}{a_n},{a_{n+1}}+1})$在函数f(x)=2x+3的图象上.
(1)求数列{an}的通项公式;
(2)若数列${b_n}={2^{a_n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={x|-3≤x≤4},B={x|2m-1<x<m+1}
(1)当m=1时,求A∩B;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知甲、乙两组数据如茎叶图所示,若它们的中位数和平均数都相同,且ma+nb=1(a,b∈R+),则$\frac{1}{2a}+\frac{3}{b}$的最小值为(  )
A.36B.32C.$4\sqrt{6}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果函数f(x)的对于任意实数x,存在常数M,使不等式|f(x)|≤M|x|恒成立,就称f(x)为有界泛函数.下列四个函数,属于有界泛函数的是(  )
①f(x)=1②f(x)=x2③f(x)=(sinx+cosx)x④$f(x)=\frac{x}{{{x^2}+x+1}}$.
A.①②B.②④C.③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\frac{tanα}{tanα-1}=-1$,求下列各式的值
(1)$\frac{sinα-3cosα}{sinα+cosα}$
(2)若α 是第三象限角,求$cos(-π+α)+cos(\frac{π}{2}+α)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,则z=x-y的最大值与最小值之差为(  )
A.5B.6C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知矩形ABCD的顶点都在半径为4的球面上,且AB=6,$BC=2\sqrt{3}$,则棱锥O-ABCD的体积为(  )
A.$8\sqrt{3}$B.$8\sqrt{2}$C.$6\sqrt{6}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-ax-2在x=1处取得极值.
(1)求a的值;
(2)若f(x)≤x2-2x+b对x∈[0,2]恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案