精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图,已知几何体的三视图(单位:cm).
(1)在这个几何体的直观图相应的位置标出字母;(2分)
(2)求这个几何体的表面积及体积;(6分)
(3)设异面直线所成角为,求.(6分)

解(1)

(2)几何体的全面积
(3异面直线所成角的余弦值为.

解析试题分析:(1)根据三视图的画出,进行复原画出几何体的图形即可.
(2)几何体可看成是正方体AC1及直三棱柱B1C1Q-A1D1P的组合体,求出底面面积,然后求出体积即可.
(3)通过建立空间直角坐标系求解也可以,也能通过平移法得到异面直线的所成的角的大小,进而解得。
解(1)几何体的直观图相应的位置标出字母如图所示.…………2分 

(2)这个几何体可看成是由正方体及直三棱柱的组合体.
,可得
故所求几何体的全面积
…5分
所求几何体的体积……8分
(3)由,且,可知
为异面直线所成的角(或其补角).……10分
由题设知
中点,则,且.……12分
由余弦定理,得.……13分
所以异面直线所成角的余弦值为.………………14分
考点:本试题主要考查了三视图复原几何体,画出中逐步按照三视图的作法复原,考查空间想象能力,逻辑推理能力,计算能力,转化思想,是中档题.
点评:解决该试题的关键是能准确的由三视图得到原几何体,并能结合棱柱的体积和表面积公式准确运算,考查了一定的计算能力。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,已知在四棱锥中,底面是矩形,平面的中点, 是线段上的点.

(I)当的中点时,求证:平面
(II)要使二面角的大小为,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为 已知

(Ⅰ)设点的中点,证明:平面
(Ⅱ)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点
(1) 证明//平面
(2) 证明⊥平面
(3) 求二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(20) (本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.

(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,已知平面是垂足.

(Ⅰ)求证:平面;             
(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)如图所示,在四棱锥中,平面
平分的中点.

求证:(1)平面
(2)平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在长方体中,是棱上一点,

(1)若为CC1的中点,求异面直线A1M和C1D1所成的角的正切值;
(2)是否存在这样的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,直棱柱中,底面是直角梯形,

(1)求证:平面
(2)在A1B1上是否存一点,使得与平面平行?证明你的结论.

查看答案和解析>>

同步练习册答案