精英家教网 > 高中数学 > 题目详情

【题目】某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为( )

A. 2 B. C. D. 3

【答案】D

【解析】由三视图可得几何体的直观图如图所示:

有: ABC, ABC 边上的高为2,

所以.

该三棱锥最长的棱的棱长为.

故选D.

点睛; 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:

男生测试情况:

抽样情况

病残免试

不合格

合格

良好

优秀

人数

5

10

15

47

女生测试情况

抽样情况

病残免试

不合格

合格

良好

优秀

人数

2

3

10

2

1)现从抽取的1000名且测试等级为优秀的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;

2)若测试等级为良好优秀的学生为体育达人其它等级的学生(含病残免试非体育达人根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为是否为体育达人与性别有关?

男性

女性

总计

体育达人

非体育达人

总计

临界值表:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

:( 其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若时取到极值,求的值及的图象在处的切线方程;

(2)若时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且以两焦点为直径的圆的内接正方形面积为2.

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于 两点,在轴上是否存在点,使直线的斜率之和为定值?若存在,求出点坐标及该定值,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为( )

A. 3 B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点到点的距离和它到直线的距离相等,记点的轨迹为.

(Ⅰ)求得方程;

(Ⅱ)设点在曲线上, 轴上一点(在点右侧)满足.平行于的直线与曲线相切于点,试判断直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=3,且an+1﹣3an=3n,(n∈N*),数列{bn}满足bn=3﹣nan

(1)求证:数列{bn}是等差数列;

(2)设,求满足不等式的所有正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱中,已知侧面.

1)求证 平面

2是棱长上的一点,若二面角的正弦值为的长.

查看答案和解析>>

同步练习册答案