A. | (-∞,$\frac{1}{4}$] | B. | (0,$\frac{1}{4}$) | C. | (-$\frac{1}{4}$,0) | D. | [-$\frac{1}{4}$,+∞) |
分析 把圆的方程化为标准方程,找出圆心坐标和半径,由已知圆关于直线2ax-by+2=0对称,得到圆心在直线上,故把圆心坐标代入已知直线方程得到a与b的关系式,由a表示出b,设m=ab,将表示出的b代入ab中,得到m关于a的二次函数关系式,由二次函数求最大值的方法即可求出m的最大值,即为ab的最大值,即可写出ab的取值范围.
解答 解:把圆的方程化为标准方程得:(x+1)2+(y-2)2=4,
∴圆心坐标为(-1,2),半径r=2,
根据题意可知:圆心在已知直线2ax-by+2=0上,
把圆心坐标代入直线方程得:-2a-2b+2=0,即b=1-a,
则设m=ab=a(1-a)=-a2+a,
∴当a=$\frac{1}{2}$时,m有最大值,最大值为$\frac{1}{4}$,即ab的最大值为$\frac{1}{4}$,
则ab的取值范围是(-∞,$\frac{1}{4}$].
故选:A.
点评 本题以直线与圆为载体,考查对称性,考查了直线与圆相交的性质,以及二次函数的性质.根据题意得到圆心在已知直线上是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x0∈R,${e^{x_0}}$<0 | |
B. | 函数$f(x)={x^2}-{log_{\frac{1}{2}}}$x的零点个数为2 | |
C. | 若p∨q为真命题,则p∧q也为真命题 | |
D. | 命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com