精英家教网 > 高中数学 > 题目详情

【题目】过椭圆的左顶点斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.

1)求椭圆的离心率;

2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.

【答案】(12.

【解析】

试题分析:(I)根据,设直线方程为,

确定的坐标,由确定得到

再根据点在椭圆上,求得进一步即得所求

2可设,

得到椭圆的方程为

根据动直线与椭圆有且只有一个公共点P

得到,整理得.

确定的坐标

,

轴上存在一定点,使得,那么

可得,由恒成立,故,得解.

试题解析:1 ,设直线方程为,

,则,, 2分

3分

=,

整理得 4分

点在椭圆上,, 5分

, 6分

2可设,

椭圆的方程为 7分

8分

动直线与椭圆有且只有一个公共点P

,即

整理得 9分

则有,

10分

,

轴上存在一定点,使得,

恒成立

整理得, 12分

恒成立,故

所求椭圆方程为 13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若要按从大到小给7,5,9,3,10五个数排序,试写出算法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, 底面 . 

1)求证:平面 平面

2)设上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.

图中,课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组”).

(Ⅰ)在“组”中,选择人文类课程和自然科学类课程的人数各有多少?

(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组”中选择

程或课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择课程的学生中有人参加科学营活动,每人需缴纳元,选择课程的学生中有人参加该活动,每人需缴纳元.记选择课程和课程的学生自愿报名人数的情况为,参加活动的学生缴纳费用总和为元.

①当时,写出的所有可能取值;

②若选择课程的同学都参加科学营活动,求元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面为菱形,平面,点在棱上.

(Ⅰ)求证:直线平面

(Ⅱ)若平面,求证:

(Ⅲ)是否存在点,使得四面体的体积等于四面体的体积的?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )与轴交于 两点, 为椭圆的左焦点,且是边长为2的等边三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于 两点,点关于轴的对称点为不重合),则直线轴交于点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是(

A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数

(1)证明:

(2)若不等式的解集是非空集,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校举行的 “青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:

组别

分组

频数

频率

第1组

[50,60)

8

0.16

第2组

[60,70)

a

第3组

[70,80)

20

0.40

第4组

[80,90)

0.08

第5组

[90,100]

2

b

合计

(1)求出的值;

(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;

(3)根据频率分布直方图,估计这50名学生成绩的众数、中位数和平均数。

查看答案和解析>>

同步练习册答案