精英家教网 > 高中数学 > 题目详情

【题目】变量x,y满足约束条件 ,若使z=ax+y取得最大值的最优解有无穷多个,则实数a的取值集合是(
A.{﹣3,0}
B.{3,﹣1}
C.{0,1}
D.{﹣3,0,1}

【答案】B
【解析】解:不等式对应的平面区域如图:

由z=ax+y得y=﹣ax+z,

若a=0时,直线y=﹣ax+z=z,此时取得最大值的最优解只有一个,不满足条件.

若﹣a>0,则直线y=﹣ax+z截距取得最大值时,z取的最大值,此时满足直线y=﹣ax+z与y=x﹣2平行,

此时﹣a=1,解得a=﹣1.

若﹣a<0,则直线y=﹣ax+z截距取得最大值时,z取的最大值,此时满足直线y=﹣ax+z与y=﹣3x+14平行,

此时﹣a=﹣3,解得a=3.

综上满足条件的a=3或a=﹣1,

故实数a的取值集合是{3,﹣1},

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=1,an+1﹣ansin2θ=sin2θcos2nθ.
(Ⅰ)当θ= 时,求数列{an}的通项公式;
(Ⅱ)在(Ⅰ)的条件下,若数列{bn}满足bn=sin ,Sn为数列{bn}的前n项和,求证:对任意n∈N* , Sn<3+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,直线l:x﹣ty﹣2=0.
(1)若直线l与曲线y=f(x)有且仅有一个公共点,求公共点横坐标的值;
(2)若0<m<n,m+n≤2,求证:f(m)>f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m是一个给定的正整数,m≥3,设数列{an}共有m项,记该数列前i项a1 , a2 , …,ai中的最大项为Ai , 该数列后m﹣i项ai+1 , ai+2 , …,am中的最小项为Bi , ri=Ai﹣Bi(i=1,2,3,…,m﹣1);
(1)若数列{an}的通项公式为 (n=1,2,…,m),求数列{ri}的通项公式;
(2)若数列{an}满足a1=1,r1=﹣2(i=1,2,…,m﹣1),求数列{an}的通项公式;
(3)试构造项数为m的数列{an},满足an=bn+cn , 其中{bn}是公差不为零的等差数列,{cn}是等比数列,使数列{ri}是单调递增的,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,菱形ABCD的边长为12,∠BAD=60°,AC与BD交于O点.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,DM=6
(I)求证:平面ODM⊥平面ABC;
(II)求二面角M﹣AD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.
(1)求圆C的直角坐标方程;
(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某班甲、乙两位同学在5次阶段性检测中的数学成绩(百分制)的茎叶图,甲、乙两位同学得分的中位数分别为x1 , x2 , 得分的方差分别为y1 , y2 , 则下列结论正确的是(
A.x1<x2 , y1<y2
B.x1<x2 , y1>y2
C.x1>x2 , y1>y2
D.x1>x2 , y1<y2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x﹣sin2x+ ,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)设△ABC为锐角三角形,角A所对边a= ,角B所对边b=5,若f(A)=0,求△ABC的面积.

查看答案和解析>>

同步练习册答案