分析 (1)根据指数幂,绝对值以及三角函数值计算即可;
(2)根据二元一次方程组的解法计算即可;解一元二次方程即可;
(3)求出各个不等式的解,取交集即可.
解答 解:(1)原式=4-$\sqrt{3}$+1+$\sqrt{3}$+1=4;
(2)①由2x+y=0得:4x+2y=0,
和3x-2y=7左右两边分别相加得:x=7,
将x=7带入2x+y=0,解得:y=-14,
故方程组的解是:$\left\{\begin{array}{l}{x=7}\\{y=-14}\end{array}\right.$;
②∵${m^2}+(5\sqrt{3}tan{30^o})m-12cos{60^o}=0$,
∴m2+5m-6=0,即(m+6)(m-1)=0,
解得:m=-6或m=1;
(3)由x-1≥1-x,解得:x≥1,
由x+8>4x-1,解得:x<3,
故不等式组的整数解是:1,2.
点评 本题考查了解方程,不等式以及化简计算问题,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y1<y2<y3 | B. | y3<y2<y1 | C. | y3<y1<y2 | D. | y2<y3<y1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{-1+\sqrt{3}}}{2}$ | B. | $\frac{{-1+\sqrt{5}}}{2}$ | C. | $\frac{{1+\sqrt{5}}}{2}$ | D. | $2+\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com