精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2x+alnx(a∈R),
(1)当a=-4时,求f(x)的最小值;
(2)若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围;
(3)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.
解:(1)f(x)=x2+2x-41nx(x>0),f′(x)=2x+2-
当x>1时,f′(x)>0,当0<x<1时,f′(x)<0,
∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
∴f(x)min=f(1)=3.
(2)
若f(x)在(0,1)上单调递增,则2x2+2x+a≥0在x∈(0,1)上恒成立
在x∈(0,1)上恒成立,
令u=-2x2-2x,x∈(0,1),则
∴a≥0;
若f(x)在(0,1)上单调递减,则2x2+2x+a≤0在x∈(0,1)上恒成立
综上,a的取值范围是(-∞,-4]∪[0,+∞).
(3)(2t-1)2+2(2t-1)+aln(2t-1)≥2t2+4t+2alnt-3恒成立,
a[ln(2t-1)-21nt]≥-2t2+4t-2a[ln(2t-1)-lnt2]≥2[(2t-1)-t2],
当t=1时,不等式显然成立;
当t>1时,t2-(2t-1)=t2-2t+1=(t-1)2>0t2>2t-1lnt2>ln(2t-1)
在t>1时恒成立,
,即求u的最小值,
设A(t2,lnt2),B(2t-1,ln(2t-1)),
且A、B两点在y=lnx的图象上,
又∵t2>1,2t-1>1,
故0<kAB
,故a≤2,
即实数a的取值范围为(-∞,2]。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案