精英家教网 > 高中数学 > 题目详情
12.如果实数x,y满足约束条件$\left\{\begin{array}{l}{x+y+1≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,那么目标函数z=2x-y的最小值为-5.

分析 先根据约束条件画出可行域,再利用几何意义求最值,z=2x-y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最值即可.

解答 解:变量x,y满足约束条件$\left\{\begin{array}{l}x+y+1≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$,目标函数z=2x-y
画出图形:

点A(-1,0),B(-2,-1),C(0,-1)
z在点B处有最小值:z=2×(-2)-1=-5,
故答案为:-5.

点评 本题主要考查了简单的线性规划,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解,是常用的一种方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数$y=\frac{{\sqrt{x+3}}}{x}+lg({2-x})$的定义域为[-3,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数是偶函数,且在区间(0,+∞)上单调递减的是(  )
A.y=2xB.y=log2xC.y=|x|D.y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC的一个顶点A(2,1),∠ABC的外角平分线是x=0,∠ACB的内角平分线是y=3x,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\left\{\begin{array}{l}{log}_2x,x>0\\ 3^x,x≤0\end{array}\right.$,
(1)画出f(x)的函数图象;
(2)若关于x的方程f(x)+x-a=0有两个实数根,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等腰三角形ABC中,A=90°,AB=3
(1)在三角形ABC中任取一点,离三个顶点距离都不小于1的概率.
(2)在BC边上任取一点M使BM>$\frac{\sqrt{2}}{2}$AB的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数是偶函数且值域为[0,+∞)的是(  )
①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0且a≠1,设命题p:函数f(x)=2-|x|-a在x∈R内有两个零点,命题q:不等式|x-2|-|x+3|-4a2+12a-10<0对一切实数x∈R恒成立,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x2+mx+1,若命题“?x0∈R,f(x0)<0”为真,则m的取值范围是(-∞,-2)∪(2,+∞).

查看答案和解析>>

同步练习册答案