A. | [$\frac{4}{3}$,+∞) | B. | (1,$\frac{4}{3}$] | C. | [$\frac{5}{3}$,+∞) | D. | (1,$\frac{5}{3}$] |
分析 由双曲线的定义可得|PF1|-|PF2|=3|PF2|=2a,再根据点P在双曲线的下支上,可得|PF2|≥c-a,从而求得此双曲线的离心率e的取值范围.
解答 解:∵|PF1|=4|PF2|,
∴由双曲线的定义可得|PF1|-|PF2|=3|PF2|=2a,
∴|PF2|=$\frac{2}{3}$a,
∵点P在双曲线的下支,
∴$\frac{2}{3}$a≥c-a,即$\frac{5}{3}$a≥c,
∴e≤$\frac{5}{3}$,
∵e>1,
∴1<e≤$\frac{5}{3}$,
∴双曲线的离心率e的取值范围为(1,$\frac{5}{3}$].
故选:D.
点评 本题考查双曲线的定义和标准方程,以及双曲线的简单性质的应用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $y=3sin(2x-\frac{π}{6})$ | B. | y=3cos2x | C. | $y=3sin(2x+\frac{π}{3})$ | D. | y=3sin2x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 等边三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com