精英家教网 > 高中数学 > 题目详情
11.设双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1,F2,若在双曲线C的下支上存在一点P使得|PF1|=4|PF2|,则双曲线C的离心率的取值范围为(  )
A.[$\frac{4}{3}$,+∞)B.(1,$\frac{4}{3}$]C.[$\frac{5}{3}$,+∞)D.(1,$\frac{5}{3}$]

分析 由双曲线的定义可得|PF1|-|PF2|=3|PF2|=2a,再根据点P在双曲线的下支上,可得|PF2|≥c-a,从而求得此双曲线的离心率e的取值范围.

解答 解:∵|PF1|=4|PF2|,
∴由双曲线的定义可得|PF1|-|PF2|=3|PF2|=2a,
∴|PF2|=$\frac{2}{3}$a,
∵点P在双曲线的下支,
∴$\frac{2}{3}$a≥c-a,即$\frac{5}{3}$a≥c,
∴e≤$\frac{5}{3}$,
∵e>1,
∴1<e≤$\frac{5}{3}$,
∴双曲线的离心率e的取值范围为(1,$\frac{5}{3}$].
故选:D.

点评 本题考查双曲线的定义和标准方程,以及双曲线的简单性质的应用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设函数${f_0}(x)={({\frac{1}{2}})^{|x|}}$,${f_1}(x)=|{{f_0}(x)-\frac{1}{2}}|$,${f_n}(x)=|{{f_{n-1}}(x)-{{({\frac{1}{2}})}^n}}|$,则方程${f_n}(x)={({\frac{1}{n+2}})^n}$有2n+1个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.正三棱柱ABC-A1B1C1的侧棱长为3,AB=4,D是A1C1的中点,则AD与面B1DC所成角的正弦值为$\frac{12}{13}$;点E是BC中点,则过A,D,E三点的截面面积是$\frac{3}{2}\sqrt{30}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数$y=3sin(2x+\frac{π}{6})$的图象上各点沿x轴向右平移$\frac{π}{6}$个单位长度,所得函数的解析式为(  )
A.$y=3sin(2x-\frac{π}{6})$B.y=3cos2xC.$y=3sin(2x+\frac{π}{3})$D.y=3sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx-k(x-1)
(1)求f(x)的单调区间;并证明lnx+$\frac{e}{x}$≥2(e为自然对数的底数)恒成立;
(2)若函数f(x)的一个零点为x1(x1>1),f'(x)的一个零点为x0,是否存在实数k,使$\frac{x_1}{x_0}$=k,若存在,求出所有满足条件的k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\sqrt{(x-1)^{2}+1}$+$\sqrt{(x+1)^{2}+1}$,则f(x)的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知平面直角坐标系中两定点为A(2,3),B(5,3),若动点M满足|AM|=2|BM|.
(1)求动点M的轨迹方程;
(2)若直线l:y=x-5与M的轨迹交于C,D两点,求CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则△F1PF2的形状为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=2log2x+5(2≤x≤4)的最大值与最小值.

查看答案和解析>>

同步练习册答案