【题目】如图1,在矩形中,,,点在线段上,.把沿翻折至的位置,平面,连结,点在线段上,,如图2.
(1)证明:平面;
(2)当三棱锥的体积最大时,求二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)依题意得,可得出,,在线段上取一点,满足,可求出,结合得出,从而可证出四边形为平行四边形,所以,再利用线面平行的判定定理,即可证出平面;
(2)设到平面的距离为,三棱锥的体积最大时,即取到最大值,从而得出当平面平面时,取得最大值,此时,建立空间直角坐标系,利用向量法分别求出平面和平面的法向量,运用向量法求二面角的公式,即可得出二面角的余弦值.
(1)依题意得,在矩形中,,,,
所以,.
在线段上取一点,满足,
又因为,所以,
故,
又因为,所以,
因为,所以,
所以四边形为平行四边形,所以,
又因为平面,平面,
所以平面.
(2)设到平面的距离为,,又,
所以,故要使三棱锥的体积取到最大值,仅需取到最大值.
取的中点,连结,依题意得,则,
因为平面平面,,平面,
故当平面平面时,平面,.
即当且仅当平面平面时,取得最大值,此时.
如图,以为坐标原点,,的方向分别为轴,轴的正方向建立空间直角坐
标系,得,,,
,,
设是平面的一个法向量,
则
得令,解得,
又因为平面的一个法向量为,
所以,
因为为钝角,所以其余弦值等于
科目:高中数学 来源: 题型:
【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学参加诗词大赛,各答3道题,每人答对每道题的概率均为,且各人是否答对每道题互不影响.
(Ⅰ)用表示甲同学答对题目的个数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“甲比乙答对题目数恰好多2”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥D-ABC中,,且,,M,N分别是棱BC,CD的中点,下面结论正确的是( )
A.B.平面ABD
C.三棱锥A-CMN的体积的最大值为D.AD与BC一定不垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥D-ABC中,,且,,M,N分别是棱BC,CD的中点,下面结论正确的是( )
A.B.平面ABD
C.三棱锥A-CMN的体积的最大值为D.AD与BC一定不垂直
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com