精英家教网 > 高中数学 > 题目详情

(04年广东卷)(14分)

设直线与椭圆相交于两点,又与双曲线相交于C、D两点,三等分线段,求直线的方程。

解析:首先讨论l不与x轴垂直时的情况,设直线l的方程为

y=kx+b,如图所示,l与椭圆、双曲线的交点为:

依题意有,由

,则与双曲线最多只有一个交点,不合题意,故

故l的方程为

(ii)当b=0时,由(1)得

故l的方程为

再讨论l与x轴垂直的情况.

设直线l的方程为x=c,分别代入椭圆和双曲线方程可解得,

综上所述,故l的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(04年广东卷)(12分)

设函数

(I)证明:当时,

(II)点(0<x0<1)在曲线上,求曲线上在点处的切线与轴,轴正向所围成的三角形面积的表达式。(用表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年广东卷)(12分)

设函数,其中常数为整数

(I)当为何值时,

(II)定理:若函数上连续,且异号,则至少存在一点,使得

试用上述定理证明:当整数时,方程内有两个实根

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年重庆卷)(12分)

是一常数,过点的直线与抛物线交于相异两点A、B,以线段AB为直经作圆H(H为圆心)试证抛物线顶点在圆H的圆周上;并求圆H的面积最小时直线AB的方程

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年广东卷)设函数处连续,则

(A)          (B)                 (C)                   (D)

查看答案和解析>>

同步练习册答案