精英家教网 > 高中数学 > 题目详情

【题目】已知球内接四棱锥的高为相交于,球的表面积为,若中点.

(1)求证: 平面

(2)求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:

(1)由题意可得,利用线面平行的判断定理可得结论;

(2)结合题中的几何关系建立空间直角坐标系,结合平面的法向量可得二面角的余弦值为.

试题解析:

解:(1)证明:由分别是的中点,得

且满足平面平面,所以平面.

(2)由球的表面积公式,得球的半径

设球心为,在正四棱锥中,高为,则必在上,

,则

则在,则,即,

在正四棱锥中, 平面,且

轴的正方向,建立如图所示空间直角坐标系系,

中点

所以

分别是平面和平面的法向量,

可得,则

由图可知,二面角的大小为钝角,

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=m(m为正整数),an+1= 若a6=1,则m所有可能的取值的个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 已知a3=24,S11=0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)当n为何值时,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查的数据,回答下列问题:

(1)试估算该校高三年级学生获得成绩为的人数;

(2)若等级分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?

(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AC=2,BC=1,

(1)求AB的值;
(2)求sin(2A+C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:f(x)=x2+bx+c,其中:0≤b≤4,0≤c≤4,记函数f(x)满足条件: 的事件为A,则事件A发生的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是(
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形ABCD的顶点坐标分别为A(0,1),B(2,0),C(3,2).
(1)求CD边所在直线的方程;
(2)求以AC为直径的圆M的标准方程.

查看答案和解析>>

同步练习册答案