精英家教网 > 高中数学 > 题目详情
已知点A、B的坐标分别为(-5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是-
1
5

(1)求M的轨迹C的方程.
(2)若点F1(-2
5
,0),F22
5
,0),P为曲线C上的点,∠F1PF2=
π
3
,求△F1PF2的面积.
分析:(1)利用直线的斜率公式即可得出;
(2)利用椭圆的定义及余弦定理、三角形的面积公式即可得出.
解答:解:(1)设点M(x,y),(x≠±5),则kAM=
y
x+5
kBM=
y
x-5

由题意得
y
x+5
×
y
x-5
=-
1
5

化为
x2
25
+
y2
5
=1(x≠±5)

(2)设|PF1|=m,|PF2|=n,
由椭圆的定义可得:m+n=10,
在△PF1F2中,由余弦定理得(4
5
)2=m2+n2-2mncos60°

化为80=(m+n)2-3mn,
把m+n=10代入上式得80=102-3mn,
解得mn=
20
3

S△PF1F2=
1
2
mnsin60°
=
5
3
3

即△PF1F2的面积为
5
3
3
点评:熟练掌握椭圆的定义及余弦定理、三角形的面积公式、直线的斜率计算公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且它们的斜率之积-
12

(1)求点M轨迹C的方程;
(2)若过点D(2,0)的直线l与(1)中的轨迹C交于不同的两点D、F(E在D、F之间),试求△ODE与△ODF面积之比的取值范围(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【理科生做】已知点A、B的坐标分别是(0,-1),(0,1),直线AM、BM相交于点M,且它们的斜率之积为-1.
(1)求点M轨迹C的方程;
(2)若过点(2,0)且斜率为k的直线l与(1)中的轨迹C交于不同的两点E、F(E在D、F之间),记△ODE与△ODF面积之比为λ,求关于λ和k的关系式,并求出λ取值范围(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(-1,0),(1,0),直线AM与BM相交于点M,且直线AM的斜率与BM斜率之差是2,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且它们的斜率之积为-
1
2

(1)求点M的轨迹C的方程;
(2)过D(2,0)的直线l与轨迹C有两个不同的交点时,求l的斜率的取值范围;
(3)若过D(2,0),且斜率为
14
6
的直线l与(1)中的轨迹C交于不同的E、F(E在D、F之间),求△ODE与△ODF的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A、B的坐标分别是A(0,-1),B(0,1),直线AM、BM相交于点M,且它们的斜率之积是2,求点M的轨迹方程,并说明曲线的类型.

查看答案和解析>>

同步练习册答案