精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(t)= ,g(x)=cosxf(sinx)﹣sinxf(cosx),x∈(π, ).
(1)求函数g(x)的值域;
(2)若函数y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)在区间[ ,π]上为增函数,求实数ω的取值范围.

【答案】
(1)解: ,∵

,∴cosxf(sinx)=﹣1﹣sinx

同理sinxf(cosx)=﹣1﹣cosx,∴

,∴ ,∴


(2)解:由(1)

,∴

,k∈Z;解之得 ,k∈Z

则y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)的单调递增区间为 ,k∈Z,

由已知函数y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)在区间[ ,π]上为增函数,

解之得

,∴k=0,∴


【解析】(1)求出函数g(x),利用辅助角公式化简,即可求函数g(x)的值域;(2)求出y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)的单调递增区间为 ,k∈Z,利用函数y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)在区间[ ,π]上为增函数,求实数ω的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则cosAcosB=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2,﹣3), =(﹣5,4), =(1﹣λ,3λ+2).
(1)若△ABC为直角三角形,且∠B为直角,求实数λ的值;
(2)若点A、B、C能构成三角形,求实数λ应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= + ,则下列命题中正确命题的序号是
①f(x)是偶函数;
②f(x)的值域是[ ,2];
③当x∈[0, ]时,f(x)单调递增;
④当且仅当x=2kπ± (k∈Z)时,f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解下列不等式
(1)2x2﹣3x+1<0
(2) ≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(Ⅰ) 求证:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由;
(Ⅲ) 求点D到平面PAM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(

A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程;

(2)求函数的单调区间及极值;

(3)对 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=n2﹣n,数列{bn}的前n项和Tn=4﹣bn
(1)求数列{an}和{bn}的通项公式;
(2)设cn= anbn , 求数列{cn}的前n项和Rn的表达式.

查看答案和解析>>

同步练习册答案