精英家教网 > 高中数学 > 题目详情

【题目】食品安全一直是人们关心和重视的问题,学校的食品安全更是社会关注的焦点.某中学为了加强食品安全教育,随机询问了36名不同性别的中学生在购买食品时是否看保质期,得到如下“性别”与“是否看保质期”的列联表:

总计

看保质期

8

22

不看保持期

4

14

总计

(1)请将列联表填写完整,并根据所填的列联表判断,能否有的把握认为“性别”与“是否看保质期”有关?

(2)从被询问的14名不看保质期的中学生中,随机抽取3名,求抽到女生人数的分布列和数学期望.

附:,().

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)有的把握认为“性别”与“是否看食品保质期”有关系

(2)分布列见解析,

【解析】

分析:1)将列联表填写完整,求出,然后判断性别与是否看保质期之间是否有关系.
(2)判断的取值为0,1,2.3,求出概率,然后得到分布列,求解期望即可.

详解:

(1)填表如下:

总计

看保质期

8

14

22

不看保质期

10

4

14

总计

18

18

36

根据列联表中的数据,可得

.

故有的把握认为“性别”与“是否看食品保质期”有关系.

(2)由题意可知,的所有可能取值为

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )
A.60条
B.62条
C.71条
D.80条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的线性回归直线方程为,且之间的一组相关数据如下表所示,则下列说法错误的为

A.变量之间呈现正相关关系B.可以预测,当时,

C.D.由表格数据可知,该回归直线必过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“节约用水”自古以来就是中华民族的优良传统.某市统计局调查了该市众多家庭的用水量情况,绘制了月用水量的频率分布直方图,如下图所示.将月用水量落入各组的频率视为概率,并假设每天的用水量相互独立.

(l)求在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;

(2)用表示在未来3个月里月用水量不低于12吨的月数,求随杌变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,其中.

(1)写出集合中的所有元素;

(2)设,证明“”的充要条件是“

(3)设集合,设,使得,且,试判断“”是“”的什么条件并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动爱好者对自己的步行运动距离(单位:千米)和步行运动时间(单位:分钟)进行统计,得到如下的统计资料:

如果存在线性相关关系,

1)求线性回归方程(精确到0.01);

2)将分钟的时间数据称为有效运动数据,现从这6个时间数据中任取3个,求抽取的3个数据恰有两个为有效运动数据的概率。

参考数据:

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(为实常数).

(1)当时,作出的图象,并写出它的单调递增区间;

(2)设在区间的最小值为,求的表达式;

(3)设,若函数在区间上是增函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案