精英家教网 > 高中数学 > 题目详情
(2010•宜春模拟)对任意x∈R,函数f(x)的导数存在,若f′(x)>f(x)且 a>0,则以下正确的是(  )
分析:由f′(x)>f(x)可得f'(x)-f(x)>0,而由e-x[f′(x)-f(x)]>0可判断函数e-xf(x)是单调递增函数,结合a>0可求
解答:解:∵f′(x)>f(x)
∴f′(x)-f(x)>0
∵e-x>0
∴e-x[f′(x)-f(x)]>0
∴e-xf′(x)-e-xf(x)>0
而[e-xf(x)]′=(e-x)′f(x)+e-xf′(x)=-e-xf(x)+e-xf′(x)>0
∴e-xf(x)是单调递增函数
∵a>0
于是e-af(a)>e-0f(0)=f(0)
∴f(a)>eaf(0)
故选A
点评:本题主要考查了导数的基本运算及利用导数判断函数的单调性,这里的关键,是观察和利用e-xf(x)的导函数的形式,这个需要多做些题目来建立经验.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•宜春模拟)已知线段CD=2
3
,CD的中点为O,动点A满足AC+AD=2a(a为正常数).
(1)建立适当的直角坐标系,求动点A所在的曲线方程;
(2)若a=2,动点B满足BC+BD=4,且OA⊥OB,试求△AOB面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宜春模拟)已知函数f(x)=logax(a>0且a≠1)满足f(
2
a
)>f(
3
a
)
,则f(1-
1
x
)>0
的解是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宜春模拟)25人排成5×5方阵,从中选出3人,要求其中任意2人既不同行也不同列,则不同的选法为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宜春模拟)已知点P是双曲线
x2
8
-
y2
4
=1
上的动点,F1,F2分别是其左、右焦点,O为坐标原点,则
|PF1|+|PF2|
|OP|
的取值范围(  )

查看答案和解析>>

同步练习册答案