精英家教网 > 高中数学 > 题目详情

【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

图1 图2

(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件试估计的概率;

(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

5.5

8.7

1.9

301.4

79.75

385

①根据回归方程类型及表中数据,建立关于的回归方程;

②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:

【答案】(1);(2),②万元.

【解析】分析:(1)由频率分布直方图得,该汽车交易市场2017年成交的二手车使用时间在的频率为,在的频率为 ,则

(2)①由,即关于的线性回归方程为其中 关于的线性回归方程为据此可得

②根据①中的回归方程和图1,对成交的二手车可预测:

使用时间在的平均成交价格为,对应的频率为

使用时间在的平均成交价格为,对应的频率为

使用时间在的平均成交价格为,对应的频率为

使用时间在的平均成交价格为,对应的频率为

使用时间在的平均成交价格为,对应的频率为,则该汽车交易市场对于成交的每辆车可获得的平均佣金为万元.

详解:(1)由频率分布直方图得,该汽车交易市场2017年成交的二手车使用时间在的频率为,在的频率为

所以

(2)①由,即关于的线性回归方程为

因为

所以关于的线性回归方程为

关于的回归方程为

②根据①中的回归方程和图1,对成交的二手车可预测:

使用时间在的平均成交价格为,对应的频率为

使用时间在的平均成交价格为,对应的频率为

使用时间在的平均成交价格为,对应的频率为

使用时间在的平均成交价格为,对应的频率为

使用时间在的平均成交价格为,对应的频率为

所以该汽车交易市场对于成交的每辆车可获得的平均佣金为

万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)试讨论函数的极值情况;

(2)证明:当时,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,如图,在直二面角中,四边形是边长为的正方形,,且.

(Ⅰ)求证:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在线段(不包含端点)上是否存在点,使得与平面所成的角为;若存在,写出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处切线的斜率为,求此切线方程

(2)若有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,当时,对于任意的实数,都有不等式成立,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱椎中,侧棱底面分别是线段的中点,过线段的中点的平行线,分别交于点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数y=ex,曲线y=ex在与坐标轴交点处的切线方程为y=x+1,由于曲线 y=ex在切线y=x+1的上方,故有不等式ex≥x+1.类比上述推理:对于函数y=lnx(x>0),有不等式(  )

A. lnx≥x+1(x>0)B. lnx≤1﹣x(x>0)

C. lnx≥x﹣1(x>0)D. lnx≤x﹣1(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动直线)与圆交于点,则弦最短为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,其余棱长均为是棱上的一点,分别为棱的中点.

(1)求证: 平面平面

(2)若平面,求的长.

查看答案和解析>>

同步练习册答案