【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
图1 图2
(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中,):
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立关于的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;
②参考数据:.
【答案】(1);(2)①,②万元.
【解析】分析:(1)由频率分布直方图得,该汽车交易市场2017年成交的二手车使用时间在的频率为,在的频率为 ,则.
(2)①由得,即关于的线性回归方程为. 其中, 则关于的线性回归方程为,据此可得
②根据①中的回归方程和图1,对成交的二手车可预测:
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为,则该汽车交易市场对于成交的每辆车可获得的平均佣金为万元.
详解:(1)由频率分布直方图得,该汽车交易市场2017年成交的二手车使用时间在的频率为,在的频率为
所以.
(2)①由得,即关于的线性回归方程为.
因为,
所以关于的线性回归方程为,
即关于的回归方程为
②根据①中的回归方程和图1,对成交的二手车可预测:
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为;
使用时间在的平均成交价格为,对应的频率为
所以该汽车交易市场对于成交的每辆车可获得的平均佣金为
万元.
科目:高中数学 来源: 题型:
【题目】已知,如图,在直二面角中,四边形是边长为的正方形,,且.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段(不包含端点)上是否存在点,使得与平面所成的角为;若存在,写出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数y=ex,曲线y=ex在与坐标轴交点处的切线方程为y=x+1,由于曲线 y=ex在切线y=x+1的上方,故有不等式ex≥x+1.类比上述推理:对于函数y=lnx(x>0),有不等式( )
A. lnx≥x+1(x>0)B. lnx≤1﹣x(x>0)
C. lnx≥x﹣1(x>0)D. lnx≤x﹣1(x>0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com