【题目】箱中有标号为1,2,3,4,5,6,7,8且大小相同的8个球,从箱中一次摸出3个球,记下号码并放回,如果三球号码之积能被10整除,则获奖.若有2人参加摸奖,则恰好有2人获奖的概率是( )
A.B.C.D.
【答案】A
【解析】
首先求出摸一次中奖的概率,摸一次中奖是一个等可能事件的概率,做出所有的结果数和列举出符合条件的结果数,得到概率,2个人摸奖.相当于发生2次重复试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.
解:由题意知,首先求出摸一次中奖的概率,
从8个球中摸出3个,共有种结果,
3个球号码之积能被10整除,则其中一个必有5,
另外两个号码从1,2,3,4,6,7,8中抽取,且2个号码的乘积必须为偶数,
即:抽取的另外两个号码为:一个奇数和一个偶数或者两个都为偶数,
则,即共有18种结果,使得3个球号码之积能被10整除,
摸一次中奖的概率是,
2个人摸奖,相当于发生2次试验,且每一次发生的概率是,
有2人参与摸奖,恰好有2人获奖的概率是.
故选:A.
科目:高中数学 来源: 题型:
【题目】二次函数图像与轴交于,两点,交直线于,两点,经过三点,,作圆.
(1)求证:当变化时,圆的圆心在一条定直线上;
(2)求证:圆经过除原点外的一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年1月1日,我国全面实行二孩政策,某机构进行了街头调查,在所有参与调查的青年男女中,持“响应”“犹豫”和“不响应”态度的人数如下表所示:
响应 | 犹豫 | 不响应 | |
男性青年 | 500 | 300 | 200 |
女性青年 | 300 | 200 | 300 |
根据已知条件完成下面的列联表,并判断能否有的把握认为犹豫与否与性别有关?请说明理由.
犹豫 | 不犹豫 | 总计 | |
男性青年 | |||
女性青年 | |||
总计 | 1800 |
参考公式:
参考数据:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在打击拐卖儿童犯罪的活动中,警方救获一名男孩,为了确定他的家乡,警方进行了调查:
知情人士A说,他可能是四川人,也可能是贵州人;
知情人士B说,他不可能是四川人;
知情人士C说,他肯定是四川人;
知情人士D说,他不是贵州人.
警方确定,只有一个人的话不可信.根据以上信息,警方可以确定这名男孩的家乡是( )
A.四川B.贵州
C.可能是四川,也可能是贵州D.无法判断
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学届的震动。在1859年的时候,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想。在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论。若根据欧拉得出的结论,估计1000以内的素数的个数为_________(素数即质数,,计算结果取整数)
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A,B两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从A,B两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(a-)x2-2ax+lnx,a∈R
(1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值;
(2)求g(x)=f(x)+ax在x=1处的切线方程;
(3)若在区间(1,+∞)上,f(x)<0恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com