【题目】已知圆M:(x)2+y2=r2(r>0).若椭圆C:1(a>b>0)的右顶点为圆M的圆心,离心率为.
(1)求椭圆C的方程;
(2)若存在直线l:y=kx,使得直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点,点G在线段AB上,且|AG|=|BH|,求圆M半径r的取值范围.
【答案】(1);(2).
【解析】
(1)由题判断可知,,再结合离心率和椭圆的关系式即可求解;
(2)需要将题意进行转化,要求其实也就是求,联立直线与椭圆方程,求出弦长,再由圆心到直线距离公式求出弦心距,结合几何关系表示出,令可表示出,由不等式的性质和函数关系即可求解的取值范围;
(1)设椭圆的焦距为2c,
由椭圆右顶点为圆M的圆心(,0),得a,
又,所以c=1,b=1.
所以椭圆C的方程为:.
(2)设A(x1,y1),B(x2,y2),
由直线l与椭圆C交于两点A,B,则,
所以(1+2k2)x2﹣2=0,则x1+x2=0,,
所以,
点M(,0)到直线l的距离d,
则|GH|=2,
显然,若点H也在线段AB上,则由对称性可知,若直线y=kx是y轴,矛盾,
所以要使|AG|=|BH|,只要|AB|=|GH|,
所以4,
2,
当k=0时,r,
当k≠0时,2(1)=3,
又显然2,所以,
综上,.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1,y=f(x)在x=-2处有极值.
(1)求f(x)的解析式.
(2)求y=f(x)在[-3,1]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.
(1)若点的极坐标为,求的值;
(2)求曲线的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,点M,N分别为线段A1B,B1C的中点.
(1)求证:MN∥平面AA1C1C;
(2)若∠ABC=90°,AB=BC=2,AA1=3,求点B1到面A1BC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为便于计算,工作人员将上表的数据进行了处理(令),得到下表:
时间t | 1 | 2 | 3 | 4 | 5 |
储蓄存款z | 0 | 1 | 2 | 3 | 5 |
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
附:线性回归方程,其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某年级100名学生期中考试数学成绩(单位:分)的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值,并根据频率分布直方图估计这100名学生数学成绩的平均分;
(2)从[70,80)和[80,90)分数段内采用分层抽样的方法抽取5名学生,求在这两个分数段各抽取的人数;
(3)现从第(2)问中抽取的5名同学中任选2名参加某项公益活动,求选出的两名同学均来自[70,80)分数段内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com