精英家教网 > 高中数学 > 题目详情

【题目】已知函数)的最大值是0

1)求的值;

2)若,求的最小值.

【答案】12

【解析】

1,当时,上单调递增,不存在最大值,当时,上单调递增,上单调递减,从而得到答案.
(2)由(1)可得,设,(*)等价于证明,然后对进行分类讨论即可得到答案.

由已知得

时,上单调递增,不存在最大值,不符合题意舍去;

时,解得

时,,当时,

上单调递增,上单调递减

解得

2)由已知条件得*

,(*)等价于证明

①当时,则上单调递增,

时,

不符合题意;

②当时,当时,,当时,

上单调递增,上单调递减

由最大值

所以等价于能成立,因此能成立,

,则

时,,当时,

上单调递减,在上单调递增

处取得最小值,即

故当时,成立,

综上的最小值为-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CDAB =2BC,点QAE的中点.

1)求证:AC//平面DQF

2)若∠ABC=60°ACFB,求BC与平面DQF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,且,满足条件的点的轨迹为曲线

1)求曲线的方程;

2)是否存在过点的直线,直线与曲线相交于两点,直线轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与椭圆有一个相同的焦点,过点且与轴不垂直的直线与抛物线交于两点,关于轴的对称点为.

(1)求抛物线的方程;

(2)试问直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是边长为2的正方形,的中点,点上,平面的延长线上,且.

(1)证明:平面.

(2)过点的平行线,与直线相交于点,当点在线段上运动时,二面角能否等于?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线,(为参数),将曲线上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1)求曲线的极坐标方程和直线l的直角坐标方程;

2)设直线l与曲线交于不同的两点AB,点M为抛物线的焦点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三角形所在平面与梯形所在平面垂直, 为棱的中点.

(1)求证: 平面

(2)若直线与平面所成的角为30°,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)讨论函数的单调性

(2)当证明不等式恒成立(其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy上取两个定点A10),A20),再取两个动点N10m),N20n),且mn2.

1)求直线A1N1A2N2交点M的轨迹C的方程;

2)过R30)的直线与轨迹C交于PQ,过PPNx轴且与轨迹C交于另一点NF为轨迹C的右焦点,若λ1),求证:.

查看答案和解析>>

同步练习册答案