精英家教网 > 高中数学 > 题目详情
5.利用随机模拟方法计算y=x3和x=2以及x轴所围成的图形的面积.

分析 直接利用均匀随机数与内角的比的关系,求解所求面积即可.

解答 解:①利用计算器或计算机产生两组0至1之间的均匀随机数,N1,N;
②$\frac{{S}_{M}}{{S}_{矩形}}$≈$\frac{{N}_{1}}{N}$,
得SM≈$\frac{{N}_{1}}{N}$×S=$\frac{{N}_{1}}{N}$×16=$\frac{{16N}_{1}}{N}$.
即所求M的面积约为$\frac{{16N}_{1}}{N}$.

点评 本题考查几何概型的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知直线l:y=kx+1,椭圆C:x2+$\frac{{y}^{2}}{4}$=1.
(1)求证:直线1与椭圆C有两个交点;
(2)若k=2,求直线l被椭圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=($\sqrt{3},\sqrt{5}$),|$\overrightarrow{b}$|=2,求满足下列条件的$\overrightarrow{b}$的坐标.
(1)$\overrightarrow{a}$⊥$\overrightarrow{b}$(2)$\overrightarrow{a}$∥$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用五点法分别作下列函数在[-2π,2π]上的图象:
(1)y=1-sinx;
(2)y=sin(-x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{2}$,则△ABC的形状是(  )
A.等边三角形B.锐角三角形C.斜三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知cos(α-β)=-$\frac{4}{5}$,sin(α+β)=-$\frac{3}{5}$,$\frac{π}{2}$<α-β<π,$\frac{3π}{2}$<α+β<2π,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知α,β是关于x的方程x2+2(cosθ+1)x+cos2θ=0的两个根,是否存在θ∈[-$\frac{π}{4}$,$\frac{π}{4}$],使|α-β|≤2$\sqrt{2}$,若存在,试求角θ的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sin53.13°=0.8,求cos143.13°和cos216.87°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,已知在四棱锥P-ABCD中,CD∥AB,AD⊥AB,BC⊥PC,且AD=DC=PA=$\frac{1}{2}$AB=1
(1)求证:BC⊥平面PAC;
(2)试在线段PB上找一点M,使CM∥平面PAD,并说明理由;
(3)若点M是由(2)中确定的,且PA⊥AB,求四面体MPAC的体积.

查看答案和解析>>

同步练习册答案