精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线上一点到焦点的距离为4,动直线交抛物线于坐标原点O和点A,交抛物线的准线于点B,若动点P满足,动点P的轨迹C的方程为

1)求出抛物线的标准方程;

2)求动点P的轨迹方程

3)以下给出曲线C的四个方面的性质,请你选择其中的三个方面进行研究:①对称性;②范围;③渐近线;④时,写出由确定的函数的单调区间.

【答案】1;(2;(3)见解析.

【解析】

(1)根据抛物线上的点到焦点的距离等于到准线的距离列式求解即可.

(2)求出的坐标,利用动点P满足,求出动点P的轨迹C的方程即可.

(3)根据(2)中所得的方程直接得出结论即可.

(1)由题意,,所以

所以抛物线的标准方程为

(2),与抛物线方程联立,可得,,联立,可得.因为,所以,所以,故,.

消去可得

(3),可得

①因为,,关于轴对称;

②范围:,则.即

又当时, ,

,即.

,

③因为分母为,故渐近线

④当时,因为,所以由确定的函数,

,

,单调递减;当,单调递增

上递减,在上递增.

综上所述,

关于轴对称

,

③渐近线

时,由确定的函数上递减,在上递增

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线焦点的直线与抛物线交于两点,与圆交于两点,若有三条直线满足,则的取值范围为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点的距离和它到直线的距离的比是常数

求点M的轨迹C的方程;

N是圆E上位于第四象限的一点,过N作圆E的切线,与曲线C交于AB两点求证:的周长为10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点上一点坐标为.

1)求抛物线的方程;

2)过作直线,交抛物线两点,若直线中点的纵坐标为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O经过椭圆C=1ab0)的两个焦点以及两个顶点,且点(b)在椭圆C上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线l与圆O相切,与椭圆C交于MN两点,且|MN|=,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC-A1B1C1中,AB=AA1=AC=2,∠BAC=A1AC=45°,∠BAA1=60°F为棱AC的中点,E在棱BC上,且BE=2EC

(Ⅰ)求证:A1B∥平面EFC1

(Ⅱ)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,.

(1)求证:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品均需要两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为(  )

原料限额

(吨)

3

2

10

(吨)

1

2

6

A. 10万元B. 12万元C. 13万元D. 14万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}n项和为Sn,满足Sn+14an+2nN+),且a11

1)若cn,求证:数列{cn}是等差数列.

2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案