精英家教网 > 高中数学 > 题目详情
10.f(x)=atan$\frac{x}{2}$-bsinx+4,(其中a,b为常数,ab≠0),若f(3)=5,则f(2016π-3)=3.

分析 由题意可得的最小正周期为2π,由题意求得atan$\frac{3}{2}$-bsin3=1,而要求的式子为-(atan$\frac{3}{2}$-bsin3)+4,从而求得结果.

解答 解:由于f(x)=atan$\frac{x}{2}$-bsinx+4的最小正周期为2π,
若f(3)=atan$\frac{3}{2}$-bsin3+4=5,则 atan$\frac{3}{2}$-bsin3=1,
则f(2016π-3)=f(-3)=atan(-$\frac{3}{2}$ )-bsin(-3)+4=-(atan$\frac{3}{2}$-bsin3)+4=-1+4=3,
故答案为:3.

点评 本题主要考查诱导公式的应用,函数的周期性的应用,体现了整体代换的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设函数$f(x)=sin(2x-\frac{π}{6})$,则该函数的最小正周期为π,f(x)在$[0,\frac{π}{2}]$的最小值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}为等差数列,a1=2,{an}的前n和为Sn,数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+2+4对任意的n∈N*恒成立.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)是否存在非零整数λ,使不等式$λ(1-\frac{1}{a_1})(1-\frac{1}{a_2})…(1-\frac{1}{a_n})cos\frac{{{a_{n+1}}π}}{2}<\frac{1}{{\sqrt{{a_n}+1}}}$对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.
(Ⅲ)各项均为正整数的无穷等差数列{cn},满足c39=a1007,且存在正整数k,使c1,c39,ck成等比数列,若数列{cn}的公差为d,求d的所有可能取值之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若角α的终边经过点P(1,-2),则cosα=$\frac{{\sqrt{5}}}{5}$; tan2α=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为165的样本,已知在高一年级抽取了55人,高二年级抽取了60人,则高中部共有多少学生?并就高三年级写出具体的抽样过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列四个命题:
①若0>a>b,则$\frac{1}{a}<\frac{1}{b}$;②x>0,$x+\frac{1}{x-1}$的最小值为3;
③椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$比椭圆$\frac{x^2}{4}+\frac{y^2}{2}=1$更接近于圆;
④设A,B为平面内两个定点,若有|PA|+|PB|=2,则动点P的轨迹是椭圆;
其中真命题的序号为①③.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合U={ 1,2,3,4,5,6,7 },A={ 2,4,5,7 },B={ 3,4,5 }则(∁UA)∪(∁UB)=(  )
A.{ 1,6 }B.{ 4,5}C.{ 2,3,4,5,7 }D.{ 1,2,3,6,7 }

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,短轴的两个端点分别为A,B,且|AB|=2,△ABF为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线NH与椭圆C交于另一点J,若$\overrightarrow{HM}$•$\overrightarrow{HN}$=-$\frac{1}{2}$,试求以线段NJ为直径的圆的方程;
(3)已知l1,l2是过点A的两条互相垂直的直线,直线l1与圆O:x2+y2=4相交于P,Q两点,直线l2与椭圆C交于另一点R,求△PQR面积最大值时,直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若数列{an}的通项公式为an=(-1)n(3n-2),则a1+a2+…+a8=12.

查看答案和解析>>

同步练习册答案