精英家教网 > 高中数学 > 题目详情

【题目】如图是正四面体的平面展开图,分别是的中点,在这个正四面体中:①平行;②为异面直线;③成60°角;④垂直.以上四个命题中,正确命题的个数是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】分析:正四面体的平面展开图复原为正四面体A(B、C)﹣DEF,

,依题意,MN∥AF,而DEAF异面,从而可判断DEMN不平行;

,假设BDMN共面,可得A、D、E、F四点共面,导出矛盾,从而可否定假设,肯定BDMN为异面直线;

,依题意知,GH∥AD,MN∥AF,∠DAF=60°,于是可判断GHMN60°角;

,连接GF,那么A点在平面DEF的射影肯定在GF上,通过线面垂直得到线线垂直.

详解:将正四面体的平面展开图复原为正四面体A(B、C)﹣DEF,如图:

对于①,M、N分别为EF、AE的中点,则MN∥AF,而DEAF异面,故DEMN不平行,故错误;

对于②,BDMN为异面直线,正确(假设BDMN共面,则A、D、E、F四点共面,与ADEF为正四面体矛盾,故假设不成立,故BDMN异面);

对于,依题意,GH∥AD,MN∥AF,∠DAF=60°,故GHMN60°角,故正确;

对于,连接GF,A点在平面DEF的射影A1GF上,∴DE⊥平面AGF,DE⊥AF,

AF∥MN,∴DEMN垂直,故正确.

综上所述,正确命题的序号是②③④,

故答案为:②③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

1)当时,试比较的大小关系;

2)猜想的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳(单位:次)

63

a

75

60

63

72

70

a1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则

A2号学生进入30秒跳绳决赛

B5号学生进入30秒跳绳决赛

C8号学生进入30秒跳绳决赛

D9号学生进入30秒跳绳决赛

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求的极值;

(Ⅱ)当时,设,求证:曲线存在两条斜率为且不重合的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,为等边三角形,是线段上的一点,且平面.

(1)求证:的中点;

(2)若的中点,连接,平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某片森林原来面积为a,计划每年砍伐的森林面积是上一年年末森林面积的p%,当砍伐到原来面积的一半时,所用时间是10年,已知到2018年年末,森林剩余面积为原来面积的,为保护生态环境,森林面积至少要保留原来面积的.

1)求每年砍伐面积的百分比P%

2)到2018年年末,该森林已砍伐了多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数.

(Ⅰ)求的最小值及取得最小值时的取值范围;

(Ⅱ)若集合,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数满足的虚部为2

1)求复数

2)设在复平面上对应点分别为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元), 表示购机的同时购买的易损零件数.

=19,yx的函数解析式;

若要求需更换的易损零件数不大于的频率不小于0.5,的最小值;

假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

查看答案和解析>>

同步练习册答案