精英家教网 > 高中数学 > 题目详情
16.如图,已知直线a与三条平行直线m、n、l分别相交于A、B、C.求证:直线a、m、n、l共面.

分析 设a∩l=A,b∩l=B,c∩l=C,由a∥b,得过a、b可以确定一个平面α.由b∥c,得过b、c可以确定一个平面β,由已知推导出α与β重合,从而能证明a、b、c、l共面.

解答 证明:如图,设a∩l=A,b∩l=B,c∩l=C,
∵a∥b,∴过a、b可以确定一个平面α.
∵A∈a,B∈b,a、b?α,
∴A∈α,B∈α,∴AB?α,即l?α.
又∵b∥c,
∴过b、c可以确定一个平面β,同理可证l?β.
∵α、β都过相交直线b、l
∴α与β重合,
∴a、b、c、l共面.

点评 本题考查四线共面的证明,是基础题,解题时要认真审题,注意平面的基本性质及推论的合理运用.共面问题的证明常有下列方法:1.先作一个平面,再证明有关的点或线在这个平面内;2.先过某些点或线作多个平面,再证明这些平面重合;3.用反证法.本题采用方法2证明较好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx,g(x)=xe-x
(Ⅰ)求关于x的不等式f(x)>0的解集;
(Ⅱ)对任意x1∈[1,3],x2∈[0,$\frac{π}{2}$],不等式g(x1)+a+3>f(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}满足$\frac{a_1}{9}+\frac{a_2}{7}+\frac{a_3}{5}+…+\frac{a_n}{11-2n}$=n
(1)求数列{an}的通项公式;   
(2)求数列{|an|}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x∈R+,函数f($\frac{1}{x}$)=-f(x),f($\frac{2}{x}$)=-f(2x),若x∈[1,2]时,f(x)=(x-1)(x-2),则函数y=f(x)+$\frac{1}{4}$在区间[1,100]内零点的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.作出下列函数一个周期的图象,并指出振幅、周期和初相:
(1)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin(3x-$\frac{π}{6}$);
(3)y=$\sqrt{3}$sin2x+cos2x;
(4)y=cosx+sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:GH∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆E的焦点在坐标轴上,对称中心为原点,直线l:x-2y+2=0过椭圆E的一个焦点F1和一个顶点B,则椭圆E的离心率为(  )
A.$\frac{1}{5}$或$\frac{2}{5}$B.$\frac{1}{5}$或$\frac{\sqrt{5}}{5}$C.$\frac{2}{5}$或$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{5}$或$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求不等式$\frac{2x-3}{x-3}$>$\frac{2x-3}{3x-2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知角θ的终边经过点P(-$\sqrt{3}$,m)(m≠0)且sinθ=$\frac{\sqrt{2}}{4}$m,则cosθ=-$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

同步练习册答案