精英家教网 > 高中数学 > 题目详情
已知空间四边形OABC,M,N分别是OA,BC的中点,且
OA
=
a
OB
=
b
OC
=
c
,用
a
b
c
表示向量
MN
为(  )
分析:如图所示,连接ON,AN,利用向量的中点公式可得
ON
=
1
2
OB
+
OC
)=
1
2
b
+
c
),
AN
=
1
2
AC
+
AB
),进而即可得出.
解答:解:如图所示,连接ON,AN,
ON
=
1
2
OB
+
OC
)=
1
2
b
+
c
),
AN
=
1
2
AC
+
AB

=
1
2
OC
-2
OA
+
OB

=
1
2
(-2
a
+
b
+
c

=-
a
+
1
2
b
+
1
2
c

所以
MN
=
1
2
ON
+
AN
)=-
1
2
a
+
1
2
b
+
1
2
c

故选C.
点评:熟练掌握向量的运算法则、中点公式等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:黄冈中学 高二数学(下册)、考试卷3 空间的角度与距离同步测试卷 题型:044

如图,已知向量,可构成空间向量的一组基底,若,在向量已有的运算法则基础上,新定义一种运算.显然a×b的结果仍为一向量,记作p.

(1)求证:向量p为平面OAB的法向量;

(2)求证:以OA,OB为边的平行四边形OADB面积等于|a×b|;

(3)将得到四边形OADB按向量平移,得到一个平行六面体,试判断平行六面体的体积V与|(a×b)·c|的大小.

查看答案和解析>>

科目:高中数学 来源:黄冈中学 高二数学(下册)、考试卷5 简单几何体同步测试卷(二) 题型:044

如图,已知向量,可构成空间向量的一组基底,若,在向量已有的运算法则基础上,新定义一种运算.显然的结果仍为一向量.

(1)求证:向量p为平面OAB的法向量;

(2)求证:以OA,OB为边的平行四边形OADB的面积等于

(3)得到四边形OADB按向量平移,得到一个平行六面体,试判断平行六面体的体积V与的大小关系.

查看答案和解析>>

科目:高中数学 来源:设计选修数学2-1苏教版 苏教版 题型:044

如图,已知在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,求OA与BC夹角的余弦值.

查看答案和解析>>

同步练习册答案