精英家教网 > 高中数学 > 题目详情
17.若10b1(2)=a02(3),则数字a+b=2.

分析 可以用每个数位上的数字乘以对应的权重,累加后,即可将二进制数或三进制数转化为十进制数,考虑到进制中数字的取值范围,从而得到答案.

解答 解:(10b1)2
=1×23+0×22+b×21+1×20
=8+0+2b+1
=9+2b(b=0或1);
(a02)3
=a×32+0×31+2×30
=9a+2(a=0或1或3).
根据题意得,9+2b=9a+2,
∴a=1,b=1.
∴a+b=2.
故答案为:2.

点评 本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$,给出下列结论:
①f(x)的单调递增区间是(0,2);
②函数y=f(x)的图象与直线y=k(k∈R)至少有一个公共点;
③函数y=f(x)的图象与y=x3-2x2+x的图象有三个公共点,
其中正确的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(4,0),B(2$\sqrt{3}$,$\frac{π}{6}$),圆C的极坐标方程为ρ=2sinθ.
(Ⅰ)求直线AB和圆C的直角坐标方程.
(Ⅱ)已知P为圆C上的任意一点,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前10项和为30,它的前30项和为210,则前20项和为(  )
A.100B.120C.390D.540

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=2tan(3x-$\frac{π}{4}$),试求函数的定义域、值域、最小正周期、单调区间并判断函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,若an=$\frac{1}{\sqrt{n}+\sqrt{n-1}}$(n∈N*),则S2009的值为$\sqrt{2009}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为$\frac{65}{81}$,则事件A恰好发生一次的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{32}{81}$D.$\frac{8}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设向量$\overrightarrow{e_1}$和$\overrightarrow{e_2}$不共线.
(1)如果$\overrightarrow{AB}$=$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow{BC}$=2$\overrightarrow{e_1}$+8$\overrightarrow{e_2}$,$\overrightarrow{CD}$=3($\overrightarrow{e_1}$-$\overrightarrow{e_2}$),求证:A、B、D三点共线;
(2)若|$\overrightarrow{e_1}$|=2,|$\overrightarrow{e_2}$|=3,$\overrightarrow{e_1}$和$\overrightarrow{e_2}$的夹角为60°,试确定k,使$k\overrightarrow{e_1}$+$\overrightarrow{e_2}$和$\overrightarrow{e_1}$+k$\overrightarrow{e_2}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知cosθ=-$\frac{5}{13}$,θ∈(π,$\frac{3π}{2}$),则cos(θ-$\frac{π}{6}$)的值为-$\frac{5\sqrt{3}+12}{26}$.

查看答案和解析>>

同步练习册答案