精英家教网 > 高中数学 > 题目详情

【题目】已知公差不为0的等差数列{an}的首项a1a(a∈R).设数列的前n项和为Sn,且成等比数列.

(1)求数列{an}的通项公式及Sn

(2).n≥2时,求AnBn

【答案】(1);(2)见解析

【解析】

(1)设出等差数列的公差,利用等比中项的性质,建立等式求得d,则数列的通项公式和前n项的和可得.

(2)利用(1)的anSn,代入不等式,利用裂项相消法与等比数列的求和公式整理AnBn

(1)设等差数列{an}的公差为d,由(2=

得(a1+d)2=a1(a1+3d),因为d0,所以d=a1=a

所以an=na,Sn=

(2)=

An=++++=(1﹣

=2n﹣1a,所以==为等比数列,公比为

Bn=+++==(1﹣

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知的方程为,平面内两定点.当的半径取最小值时:

(1)求出此时的值,并写出的标准方程;

(2)在轴上是否存在异于点的另外一个点,使得对于上任意一点,总有为定值?若存在,求出点的坐标,若不存在,请说明你的理由;

(3)在第(2)问的条件下,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=1+λan , 其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)若S5= ,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1 , l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=4,点P为直线x+2y﹣9=0上一动点,过点P向圆C引两条切线PA、PB,A、B为切点,则直线AB经过定点(
A.
B.
C.(2,0)
D.(9,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,⊥平面,底面为正方形,的中点,.

(1)求证:

(2)边上是否存在一点,使得//平面?若存在,求的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= ,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直. (Ⅰ)求a的值;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;
(Ⅲ)求证:ln(4n+1)≤16 (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校按分层抽样的方法从高中三个年级抽取部分学生调查,从三个年级抽取人数的比例为如图所示的扇形面积比,已知高二年级共有学生1 200,并从中抽取了40.

(1)该校的总人数为多少?(2)三个年级分别抽取多少人?

(3)在各层抽样中可采取哪种抽样方法?

查看答案和解析>>

同步练习册答案