精英家教网 > 高中数学 > 题目详情
14.如图,在正方体ABCD-A1B1C1D1中,找出二面角D1-BC-D的平面角.

分析 判断BC与D1C以及DC都垂直,即可找出二面角D1-BC-D的平面角.

解答 解:∵因为几何体ABCD-A1B1C1D1是正方体,
∴D1C⊥BC,DC⊥BC,
∴∠D1CD是二面角D1-BC-D的平面角.

点评 本题考查二面角的平面角的作法,直线与平面垂直的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上一动点P,圆E:(x-1)2+y2=1,过圆心E任意作一条直线与圆E交于A,B两点,圆F:(x+1)2+y2=1,过圆心F任意作一条直线与圆F交于C,D两点,则$\overrightarrow{PA}•\overrightarrow{PB}$+$\overrightarrow{PC}•\overrightarrow{PD}$最小值(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列四个命题:
(1)动点到两个定点的距离之和为定长,则动点的轨迹为椭圆;
(2)双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{35}$+y2=1有相同的焦点;
(3)点M与点F(0,-2)的距离比它到直线l:y-3=0的距离小1的轨迹方程是x2=-8y;
(4)方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的椭圆的左顶点为A,左、右焦点为F1、F2,D是它短轴的一个顶点.若2$\overrightarrow{D{F}_{1}}$-$\overrightarrow{DA}$=$\overrightarrow{D{F}_{2}}$,则该椭圆的离心率为$\frac{1}{3}$.
其中正确命题的序号(2),(3),(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.甲乙两人向某个目标射击,他们每次击中目标的概率如下表:
 第一次第二次第三次
 甲  0.4 0.6 0.8
 乙0.5 0.6  0.9
(Ⅰ)若两人同时向目标射击一次,求目标被击中的概率;
(Ⅱ)若由甲开始两人轮流向目标射击,击中目标就停止,现在共有5发子弹,写出使用子弹数?分布列,求?的期望(均值).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某城市固定电话市内通话的收费标准是:每次通话3分钟以内,收费0.22元;超过3分钟后,每分钟(不足1分钟按1分钟计算)收费0.11元.如果通话时间不超过6分钟,试建立通话应付费与通话时间之间的函数关系,并作出函数图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求证:曲线y=$\frac{{a}^{2}}{x}$(a为非零常数)上任何一点处的切线与坐标轴围成的三角形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A(1,4),B(3,1),直线l:y=ax+2与线段AB相交于P,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1、F2,过点F1作圆x2+y2=a2的一条切线分别交双曲线的左、右两支于点B、C,与双曲线的渐近线在第二象限内交于点D,且|CD|=|CF2|,则双曲线的离心率为(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.△ABC中,C=60°,a,b边的长是方程x2-8x+6=0的根,则c边长为4$\sqrt{3}$.

查看答案和解析>>

同步练习册答案