精英家教网 > 高中数学 > 题目详情
将自然数按如图排列,其中处于从左到右第m列从下到上第n行的数记为A(m,n),如A(3,1)=4,A(4,2)=12,则A(1,n)=
 
;A(10,10)=
 
考点:归纳推理
专题:计算题,推理和证明
分析:由题意,A(1,n)=1+2+…+n=
n(n+1)
2
,再求出A(1,10),即可求出A(10,10).
解答: 解:由题意,A(1,n)=1+2+…+n=
n(n+1)
2

∴A(1,10)=
10×11
2
=55,
∴A(10,10)=55+10+11+…+18=181,
故答案为:
n(n+1)
2
,181.
点评:本题考查推理知识的运用,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα-cosα=2sinα•cosα,则sin2α的值为(  )
A、
-1-
5
2
B、
-1+
5
2
C、
-1+
5
4
D、
-1-
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x∈R|ax2-2x+1=0}的子集恰有两个,则实数a的集合为(  )
A、{a|a<1}
B、{a|a<1且a≠0}
C、{0,1}
D、{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,1),B、C为抛物线y2=x上任意两点,∠ABC=90°,求AC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系中,坐标原点为O,点A,B在x轴上,OA=1,OB=5,点C在y轴上,OC=2.5,第一象限有一点D的坐标为(3,4),连接AD,BD,点E是线段AB上一动点(不与点A重合),过E作EF⊥AB交射线AD于点F,以EF为一边在EF的右侧作正方形EFGH,设E点的坐标为(t,0)
(1)求射线AD的解析式;
(2)在线段AB上是否存在点E,使△OCG为等腰三角形?若存在,求正方形EFGH的边长;若不存在,请说明理由;
(3)设正方形EFGH与△ABD重叠部分面积为S,求S与t的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
x
,g(x)=x+lnx,其中a>0,且x∈(0,+∞).
(1)若a=1,求f(x)的最小值;
(2)若对任意x≥1,不等式f(x)≤g(x)恒成立,求实数a的取值范围;
(3)已知数列{an}满足:a1∈[1,2],且对任意正整数n,有an+1=an+2n+2,求证:
lna1
a1
+
lna2
a2
+…+
lnan
an
n2
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-x2
(1)当a=2时,求函数y=f(x)在区间[
1
2
,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x)在(0,3)不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-|x3-2x2+x|(x<1)
lnx(x≥1)
,若命题“?t∈R,且t≠0,使得f(t)≥kt”是假命题,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的各项均为正数,a1=3,a3=7,其前n项和为Sn,{bn}为等比数列,b1=2,且b2S2=32.
(Ⅰ)求an与bn
(Ⅱ)若
1
S1
+
1
S2
+…+
1
Sn
≤x2+ax+1对任意正整数n和任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案