精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象与的图象关于对称,且,函数的定义域为

(1)求的值;

(2)若函数上是单调递增函数,求实数的取值范围;

(3)若函数的最大值为2,求实数的值.

【答案】(1);(2);(3)

【解析】

1)根据反函数的概念求得解析式,利用列方程求得的值.

2)利用二次函数的性质,结合复合函数单调性同增异减列不等式,解不等式求得实数的取值范围.

3)根据二次函数的性质,结合函数的最大值为列方程,解方程求得求实数的值.

1)由于函数的图像与的图像关于对称,即函数互为反函数,故.,所以.

2)由(1)知,所以.时,,要使函数上是单调递增函数,结合二次函数的性质结合复合函数单调性同增异减可知,.

3)由(2)得.时,.所以

时,,不符合.

时,,符合.

时,,不符合.

综上所述,实数的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左右顶点分别为,若交直线两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装4台发电机的水电站,过去0年的水文资料显示,水库年入流量年入流量:一年内上游来水与库区降水之和,单位:亿立方米都在40以上,其中,不足80的年份有10年,不低于80且不足120的年份有30年,不低于120且不足160的年份有8年,不低于160的年份有2年,将年入流量在以上四段的频率作为相应段的概率,并假设各年的年入流量相互独立.

(1)求在未来3年中,至多1年的年入流量不低于120的概率;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量的限制,并有如下关系:

若某台发电机运行,则该台发电机年利润为500万元;若某台发电机未运行,则该台发电机年亏损1500万元,水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集具有性质:对任意的两数中至少有一个属于.

1)分别判断数集是否具有性质,并说明理由;

2)证明:

3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中, 分别为的中点, 上一个动点,且.

(1)当时,求证:平面平面

(2)是否存在,使得?若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为abc,已知2bcosC=acosC+ccosA.

(1)求角C的大小;

(2)若b=2,c=,求a及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

(1)画出散点图并判断是否线性相关;

(2)如果线性相关,求线性回归方程;

(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:恒成立;

(2)若关于的方程至少有两个不相等的实数根,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校举行了一次安全教育知识竞赛,竞赛的原始成绩采用百分制,已知高三学生的原始成绩均分布在发布成绩使用等级制各等级划分标准见表.

原始成绩

85分及以上

70分到84

60分到69

60分以下

等级

优秀

良好

及格

不及格

为了解该校高三年级学生安全教育学习情况,从中抽取了名学生的原始成绩作为样本进行统计按照的分组作出频率分布直方图如图所示其中等级为不及格的有5人,优秀的有3人.

1)求和频率分布直方图中的的值

2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若该校高三学生共1000人,求竞赛等级在良好及良好以上的人数;

3)在选取的样本中,从原始成绩在80分以上的学生中随机抽取2名学生进行学习经验介绍,求抽取的2名学生中优秀等级的学生恰好有1人的概率.

查看答案和解析>>

同步练习册答案