精英家教网 > 高中数学 > 题目详情
下列命题中,mn表示两条不同的直线,αβγ表示三个不同的平面.
①若mαnα,则mn
②若αγβγ,则αβ
③若mαnα,则mn
④若αββγmα,则mγ.
则正确的命题是 (     ) 
A.①③B.②③C.①④D.②④
C

试题分析:①显然成立;对②,αγβγαβ可以相交;对③,mαnα时,mn还可以相交,也可以异面;④若αββγ,则αγ.又mα,所以mγ.所以①④正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱是直棱柱,.点分别为的中点.

(1)求证:平面;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面ABCD是,边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在等腰直角三角形中, =900 ="6," 分别是上的点,  的中点.将沿折起,得到如图所示的四棱椎,其中

(1)证明:
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥PABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.

(1)求证:PB∥平面EFH;
(2)求证:PD⊥平面AHF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.

求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=λ(0<λ<1).

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时,平面BEF⊥平面ACD..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:a、b、c、d是不共点且两两相交的四条直线,求证:a、b、c、d共面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间中,设表示直线,表示不同的平面,则下列命题正确的是(   )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案