精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体中,点在线段上移动,有下列判断:①平面平面;②平面平面;③三棱锥的体积不变;④平面.其中,正确的是______.(把所有正确的判断的序号都填上)

【答案】①②③

【解析】

①在正方体中可证平面平面,又点在线段上移动,所以平面平面,所以①正确;

②先证平面,再根据面面垂直的判定定理可证平面平面,所以②正确;

③根据平面,可得三棱锥的体积不变,所以正确;

④由平面,而交于,可得不正确.

①因为在正方体中有, ,平面,平面,所以 平面,同理得平面,

,所以平面平面,

又点在线段上移动,所以平面平面,所以①正确;

②因为平面,所以在平面内的射影为

因为,根据三垂线定理可得

同理可得

因为

所以平面

因为平面,所以平面平面,所以②正确;

③由①知平面,所以点到平面的距离为定值,所以三棱锥的体积不变,所以正确;

④由②知平面,而交于,所以与平面不垂直,所以不正确。

故答案为:②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数)的周期为,图象的一个对称中心为将函数图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所有图象向右平移个单位长度后得到函数的图象.

1)求函数的解析式;

2)当,求实数与正整数,使恰有2019个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性;

,对任意的恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是一种反映和评价空气质量的方法,AQI指数与空气质量对应如表所示:

AQI

0~50

51~100

101~150

151~200

201~300

300以上

空气质量

轻度污染

中度污染

重度污染

严重污染

如图是某城市2018年12月全月的AQI指数变化统计图:

根据统计图判断,下列结论正确的是(  )

A. 整体上看,这个月的空气质量越来越差

B. 整体上看,前半月的空气质量好于后半个月的空气质量

C. 从AQI数据看,前半月的方差大于后半月的方差

D. 从AQI数据看,前半月的平均值小于后半月的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCDADABABDCADDCAP2AB1,点E为棱PC的中点.

(1)证明:BEDC

(2)求直线BE与平面PBD所成角的正弦值;

(3)F为棱PC上一点,满足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘徽《九章算术商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示在三棱锥PABCPA⊥平面ABCD是棱PB的中点已知PA=BC=2,AB=4,CBAB则异面直线PCAD所成角的余弦值为

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,四棱锥中,底面为平行四边形,底面

(1)求证:平面.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;

(2),求点A到平面的距离.

查看答案和解析>>

同步练习册答案