精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,的中点,平面,垂足落在线段上,的重心,已知.

1)证明:平面

2)求异面直线所成角的余弦值;

3)设点在线段上,使得,试确定的值,使得二面角为直二面角.

【答案】1)证明见解析;(2;(3.

【解析】

1)方法一:由重心的性质得出,再由,结合相似三角形的性质得出,再利用直线与平面平行的判定定理得出平面

方法二:以为原点,以射线轴的正半轴,建立空间直角坐标系,利用重心的坐标公式计算出点的坐标,可计算出,可证明出,再利用直线与平面平行的判定定理得出平面

2)计算出,利用向量的坐标运算计算出,即可得出异面直线所成角的余弦值;

3)由,得出,可求出的坐标,然后可计算出平面(即平面)的一个法向量和平面的一个法向量,由题意得出,结合空间向量数量积的坐标运算可求出实数的值.

1)方法一:如图,连接,因为的重心,的中点,

所以,,又因为平面平面平面

方法二:以为原点,以射线轴的正半轴,建立空间直角坐标系

的重心,则点的坐标为

,即

又因为平面平面平面

2

所以异面直线所成角的余弦值

3

设平面的法向量为,平面的法向量为

,得,即,令,可得

所以,平面的一个法向量为

,得,得

,则

所以,平面的一个法向量为

由于二面角为直二面角,所以,

,解得,合乎题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一 厂家在一批产品出厂前要对其进行质量检验,检验方案是: 先从这批产品中任取3件进行检验,这3件产品中优质品的件数记为.如果,再从这批产品中任取3件进行检验,若都为优质品,则这批产品通过检验;如果,再从这批产品中任取4件进行检验,若都为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.

假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.

(1) 求这批产品通过检验的概率;

(2) 已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为(单位: 元),求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,且在(0,+∞)为增函数,求的取值范围;

(2)设,若存在,使得,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p;命题q:方程表示双曲线.

⑴若命题p为真命题,求实数m的取值范围;

⑵若命题为真命题,为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)在以原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为,过直线上一点引曲线的切线,切点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC .点DEN分别为棱PA,PCBC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为打入国际市场,决定从两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)

项目类别

年固定成本

每件产品成本

每件产品销售价

每年最多可生产的件数

产品

20

10

200

产品

40

8

18

120

其中年固定成本与年生产的件数无关,为待定常数,其值由生产产品的原材料价格决定,预计.另外,年销售产品时需上交万美元的特别关税.假设生产出来的产品都能在当年销售出去.

1)写出该厂分别投资生产两种产品的年利润与生产相应产品的件数之间的函数关系,并指明其定义域;

2)如何投资才可获得最大年利润?请你做出规划.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①在中,若,则

②已知点,则函数的图象上存在一点,使得

③函数是周期函数,且周期与有关,与无关;

④设方程的解是,方程的解是,则.

其中真命题的序号是______.(把你认为是真命题的序号都填上)

查看答案和解析>>

同步练习册答案