分析 由题意可得$\left\{\begin{array}{l}{3(a-1)<0}\\{0<a<1}\\{{log}_{a}1≤3(a-1)+4a}\end{array}\right.$,由此求得a的范围.
解答 解:已知$f(x)=\left\{\begin{array}{l}3({a-1})x+4a\;,\;\;x<1\\{log_a}x\;,\;\;x≥1\end{array}\right.$是R上的减函数,
∴$\left\{\begin{array}{l}{3(a-1)<0}\\{0<a<1}\\{{log}_{a}1≤3(a-1)+4a}\end{array}\right.$,求得 $\frac{3}{7}$≤a<1,
故答案为:[$\frac{3}{7}$,1).
点评 本题主要考查函数的单调性的性质,对数函数、一次函数的单调性,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{5}{13}$ | B. | -$\frac{12}{13}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 最小项为-1,最大项为3 | B. | 最小项为-1,无最大项 | ||
C. | 无最小项,最大项为3 | D. | 既无最小项,也无最大项 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$ | B. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ | C. | -$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ | D. | $\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com