精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),曲线的参数方程为为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)分别求曲线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设直线交曲线两点,交曲线两点,求的长.

【答案】(Ⅰ)曲线的极坐标方程为:的直角坐标方程为:;(Ⅱ)

【解析】

(I)消去参数,即可得到曲线的直角坐标方程,结合即可得到曲线的极坐标方程。(II)计算直线l的直角坐标方程和极坐标方程,计算长,即可。

解法一:(Ⅰ)曲线为参数)可化为直角坐标方程:

可得

所以曲线的极坐标方程为:.

曲线

的直角坐标方程为:.

(Ⅱ)直线的直角坐标方程为

所以的极坐标方程为.

联立

联立

.

解法二:(Ⅰ)同解法一

(Ⅱ)直线的直角坐标方程为

联立解得

联立解得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下.

(1)求频率分布直方图中的值并估计这50户用户的平均用电量;

(2)若将用电量在区间内的用户记为类用户,标记为低用电家庭,用电量在区间内的用户记为类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:

①从类用户中任意抽取3户,求恰好有2户打分超过85分的概率;

②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有的把握认为“满意度与用电量高低有关”?

满意

不满意

合计

类用户

类用户

合计

附表及公式:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)当时,函数上的最小值为,若不等式有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间及极值;

(2)时,存在,使方程成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是美丽的勾股树,它是一个直角三角形分别以它的每一边向外作正方形而得到.图一是第1勾股树,重复图一的作法,得到图二为第2勾股树,以此类推,已知最大的正方形面积为1,则第n勾股树所有正方形的面积的和为(

A. nB. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:

①命题“”的否定是“”;

②命题“若,则”的否定是“若,则”;

③命题“若,则”的否命题是“若,则”;

④若“是假命题,是真命题”,则命题一真一假.

其中正确结论的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点的坐标分别为,直线相交于点,且它们的斜率之积是.

(1)求点的轨迹的方程;

(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列的前项和,且,则下列结论错误的是

A. B. C. D. 是递减数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是首项为1的等差数列,数列满足,且.

(1)求数列的通项公式;

(2)令,求数列的前项和.

查看答案和解析>>

同步练习册答案