如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.
(1)求的方程;
(2)过点作的不垂直于轴的弦,为的中点,当直线与交于两点时,求四边形面积的最小值.
(1) (2)
解析试题分析:(1)利用椭圆和双曲线之间的关系可以用分别表示双曲线和椭圆的离心率和焦点,由题目和即可得到之间的两个方程,联立方程消元即可求出的值,得到双曲线和椭圆的标准方程.
(2)利用(1)求出焦点的坐标,设出弦的直线的方程,联立直线与椭圆消得到关于的一元二次方程,再利用根与系数的关系得到两点纵坐标之间的和与积,进而得到点的纵坐标带入AB直线即可得到的横坐标,进而求出直线的方程,即为直线的方程,联立直线的方程得到的取值范围和求出点的坐标得到的长度,利用点到直线的距离得到到直线的距离表达式,进而用表示四边形的面积,利用不等式的性质和的取值范围即可得到面积的最小值.
(1)由题可得,且,因为,且,所以且且,所以椭圆方程为,双曲线的方程为.
(2)由(1)可得,因为直线不垂直于轴,所以设直线的方程为,联立直线与椭圆方程可得,则,,则,因为在直线上,所以,则直线的方程为,联立直线与双曲线可得,则,则,设点到直线的距离为,则到直线的距离也为,则,因为在直线的两端,所以,
则 ,又因为在直线上,所以,
则四边形
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知抛物线:,在此抛物线上一点到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于、两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:()的左焦点为,离心率为.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设椭圆的左、右焦点分别为,点在椭圆上,,,的面积为.
(1)求该椭圆的标准方程;
(2)设圆心在轴上的圆与椭圆在轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,为椭圆在轴正半轴上的焦点,、两点在椭圆上,且,定点.
(1)求证:当时;
(2)若当时有,求椭圆的方程;
(3)在(2)的椭圆中,当、两点在椭圆上运动时,试判断 是否有最大值,若存在,求出最大值,并求出这时、两点所在直线方程,若不存在,给出理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:经过点,其离心率.
(1)求椭圆的方程;
(2)过坐标原点作不与坐标轴重合的直线交椭圆于两点,过作轴的垂线,垂足为,连接并延长交椭圆于点,试判断随着的转动,直线与的斜率的乘积是否为定值?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左右焦点分别为,点为短轴的一个端点,.
(1)求椭圆的方程;
(2)如图,过右焦点,且斜率为的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.
求证: 为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com