精英家教网 > 高中数学 > 题目详情
5.在椭圆x2+$\frac{{y}^{2}}{9}$=1上有一点P,F1、F2分别是椭圆的上、下焦点,若|PF1|=2|PF2|,则|PF2|=2.

分析 利用椭圆的定义建立方程即可求解

解答 解:由题意可知:a=3,b=1
∵|PFF1|+|PF2||=2a=6,|PF1|=2|PF2|
∴3|PF2|=6
∴|PF2|=2
故答案为2

点评 本题直接用定义就可以求出答案,要注意焦点的位置是在y轴上

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数y=f(x-1)的定义域为[-2,3),值域是[-1,2),则f(x+2)的值域是[-1,2),f(log2x)的定义域是[$\frac{1}{8},4$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等差数列{an}的前n项和为Sn,a1=20,an=54,Sn=999,则公差d=$\frac{17}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知双曲线C为等轴双曲线,且中心在原点,以其两个实轴端点和两个虚轴端点为顶点的四边形的面积为4,求双曲线C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若向量$\overrightarrow{a}$=(1,λ,1)与$\overrightarrow{b}$=(2,-1,2)的夹角的余弦值为$\frac{\sqrt{3}}{3}$,则λ的值为-5或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在三棱锥P-ABC中,AP=AC,BP=BC,E、F、M分别是PB、BC、CP的中点,求证:平面AEF⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求适合下列条件的双曲线的标准方程及其离心率.
(1)焦点在x轴上,c=6,且过点A(-5,2);
(2)a=12,b=5;
(3)经过两点A(-7,-6$\sqrt{2}$),B($\sqrt{7}$,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.试证对于任何整数a,数8a+7不是三个整数的平方和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线l过点P(1,0),且与以A(2,1),B(0,$\sqrt{3}$)为端点线段有公共点,则直线l斜率的取值范围为(-∞,-$\sqrt{3}$]∪[1,+∞).

查看答案和解析>>

同步练习册答案