精英家教网 > 高中数学 > 题目详情

【题目】下列命题中的真命题是( )

A. ,则向量的夹角为钝角

B. ,则

C. 若命题“是真命题”,则命题“是真命题”

D. 命题“”的否定是“

【答案】D

【解析】

对于选项A:当时,向量的夹角为钝角或夹角,可以判断是否为真命题;对于选项B:要注意成立时,这个特殊情况, 对此可以判断是否为真命题;对于选项C: 命题“是真命题”中至少有一个为真命题,不能确定是真命题;

对于选项D:含有特称量词命题的否定要求改为全称量词,同时否定结论,对此可以判断是否为真命题。

选项A是钝角或平角,所以选项A是假命题;

选项B: 或者,所以选项B是假命题;

选项C: 命题“是真命题”中至少有一个为真命题,只有当都是真命题时,才是真命题,所以选项C是假命题;

选项D;根据含有特称量词命题的否定要求改为全称量词,同时否定结论,这一原则,“”的否定是“”是真命题,故本题选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将正方形沿对角线折叠,使平面平面, 若直线平面

求证:直线平面

求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A是椭圆的上顶点,斜率为的直线交椭圆EAM两点,点N在椭圆E上,且

1)当时,求的面积;

2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设,且,记;

(1)设,其中,试求的单调区间;

(2)试判断弦的斜率的大小关系,并证明;

(3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别是是其左右顶点,点是椭圆上任一点,且的周长为6,若面积的最大值为.

(1)求椭圆的方程;

(2)若过点且斜率不为0的直线交椭圆两个不同点,证明:直线的交点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量.2007年至2018年,某企业连续12年累计研发投入达4100亿元,我们将研发投入与经营收入的比值记为研发投入占营收比.这12年间的研发投入(单位:十亿元)用图中的条形图表示,研发投入占营收比用图中的折线图表示.

根据折线图和条形图,下列结论错误的是(  )

A. 2012﹣2013 年研发投入占营收比增量相比 2017﹣2018 年增量大

B. 该企业连续 12 年研发投入逐年增加

C. 2015﹣2016 年研发投入增值最大

D. 该企业连续 12 年研发投入占营收比逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校进入高中数学竞赛复赛的学生中,高一年级有6人,高二年级有12人, 高三年级有24人,现采用分层抽样的方法从这些学生中抽取7人进行采访.

(1)求应从各年级分别抽取的人数;

(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为,高二学生记为,高三学生记为

①列出所有可能的抽取结果;

②求抽取的2人均为高三年级学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,直线交于两点,的面积为.

(1)求的方程;

(2)若上的两个动点,,试问:是否存在定点,使得?若存在,求的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案