【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分。每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
科目:高中数学 来源: 题型:
【题目】“节约用水”自古以来就是中华民族的优良传统.某市统计局调查了该市众多家庭的用水量情况,绘制了月用水量的频率分布直方图,如下图所示.将月用水量落入各组的频率视为概率,并假设每天的用水量相互独立.
(l)求在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;
(2)用表示在未来3个月里月用水量不低于12吨的月数,求随杌变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x)<b·g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在上单调递增,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为实常数).
(1)当时,作出的图象,并写出它的单调递增区间;
(2)设在区间的最小值为,求的表达式;
(3)设,若函数在区间上是增函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合集合,集合,且集合D满足.
(1)求实数a的值.
(2)对集合,其中,定义由中的元素构成两个相应的集合:,,其中是有序实数对,集合S和T中的元素个数分别为和,若对任意的,总有,则称集合具有性质P.
①请检验集合是否具有性质P,并对其中具有性质P的集合,写出相应的集合S和T.
②试判断m和n的大小关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某地每单位面积菜地年平均使用氮肥量x(单位:kg)与每单位面积蔬菜年平均产量Y(单位:t)之间的关系有如下数据:
年份 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
x/kg | 70 | 74 | 80 | 78 | 85 | 92 | 90 | 95 |
Y/t | 5.1 | 6.0 | 6.8 | 7.8 | 9.0 | 10.2 | 10.0 | 12.0 |
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
x/kg | 92 | 108 | 115 | 123 | 130 | 138 | 145 | |
Y/t | 11.5 | 11.0 | 11.8 | 12.2 | 12.5 | 12.8 | 13.0 |
(1)求x与Y之间的相关系数,并检验是否线性相关;
(2)若线性相关,求每单位面积蔬菜年平均产量Y与每单位面积菜地年平均使用氮肥量x之间的回归直线方程,并估计每单位面积菜地年平均使用氮肥150 kg时,每单位面积蔬菜的年平均产量.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com