精英家教网 > 高中数学 > 题目详情

【题目】函数 的最小正周期为π,若其图象向左平移 个单位后得到的函数为奇函数,则函数f(x)的图象(
A.关于点 对称
B.关于点 对称
C.关于直线 对称
D.关于直线 对称

【答案】C
【解析】解:由已知 ,则ω=2
f(x)=sin(2x+φ)向左移 个单位得 为奇函数
则有
∵|φ|< ∴φ=
.代入选项检验,当x= 时, 为函数的最大值
根据三角函数的性质可知对称轴处将取得函数的最值,C正确.
故选:C
【考点精析】本题主要考查了正弦函数的对称性和函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握正弦函数的对称性:对称中心;对称轴;图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,抛物线C1:x2=4y,C2:x2=-2py(p>0).M(x0,y0)在抛物线C2,MC1的切线,切点为A,B(M为原点O,A,B重合于O).x0=1-,切线MA的斜率为-.

(1)p的值;

(2)MC2上运动时,求线段AB中点N的轨迹方程(A,B重合于O,中点为O).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三学生中随机抽取了名学生,统计了期末数学考试成绩如下表:

(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这名学生的平均成绩;

(2)用分层抽样的方法在分数在内的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至少有人的分数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线经过点M( ).
(1)如果此双曲线的渐近线为 ,求双曲线的标准方程;
(2)如果此双曲线的离心率e=2,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面 分别是 的中点, 上,且

(1)求证: 平面

(2)在线段上上是否存在点,使二面角

的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某气象站观测点记录的连续4天里, 指数与当天的空气水平可见度(单位)的情况如下表1:

哈尔滨市某月指数频数分布如下表2

(1)设,根据表1的数据,求出关于的回归方程;

(参考公式: ,其中

(2)小张开了一家洗车店,经统计,当不高于200时,洗车店平均每天亏损约2000元;当时,洗车店平均每天收入约4000元;当大于400时,洗车店平均每天收入约7000元;根据表2估计校长的洗车店该月份平均每天的收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2cos2x, ), =(1,sin2x),函数f(x)= ﹣1.
(1)当x= 时,求|a﹣b|的值;
(2)求函数f(x)的最小正周期以及单调递增区间;
(3)求方程f(x)=k,(0<k<2),在[﹣ ]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c且满足csinA=acosC
(1)求角C的大小;
(2)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱.
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.
D.棱台各侧棱的延长线交于一点.

查看答案和解析>>

同步练习册答案