已知等差数列{an}的前n项和为Sn,n∈N*,且满足a2+a4=14,S7=70.
(1)求数列{an}的通项公式;
(2)若bn=,则数列{bn}的最小项是第几项,并求该项的值.
科目:高中数学 来源: 题型:解答题
从数列中抽出一些项,依原来的顺序组成的新数列叫数列的一个子列.
(1)写出数列的一个是等比数列的子列;
(2)设是无穷等比数列,首项,公比为.求证:当时,数列不存在
是无穷等差数列的子列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
我国是一个人口大国,随着时间推移,老龄化现象越来越严重,为缓解社会和家庭压力,决定采用养老储备金制度.公民在就业的第一年交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…,an是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,…,以Tn表示到第n年所累计的储备金总额.
(1)写出Tn与Tn-1(n≥2)的递推关系式;
(2)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知{an}是首项为-2的等比数列,Sn是其前n项和,且S3,S2,S4成等差数列,
(1)求数列{an}的通项公式.
(2)若bn=log2|an|,求数列{}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+…
+2n-1bn=nan,设数列{bn}的前n项和为Sn.
(1)求数列{an},{bn}的通项公式;
(2)求满足13<Sn<14的n的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列{an}是递增数列,且满足a4·a7=15,a3+a8=8.
(1)求数列{an}的通项公式;
(2)令bn=(n≥2),b1=,求数列{bn}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com