【题目】已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:
(1)证明:平面平面ABC;
(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.
【答案】(1)见解析(2)
【解析】
(1) 设的中点为,连接.由展开图可知,,.为的中点,则有,根据勾股定理可证得,
则平面,即可证得平面平面.
(2) 由线面成角的定义可知是直线与平面所成的角,
且,最大即为最短时,即是的中点
建立空间直角坐标系,求出与平面的法向量利用公式即可求得结果.
(1)设AC的中点为O,连接BO,PO.
由题意,得,,.
在中,,O为AC的中点,,
在中,,,,,.
,平面,平面ABC,
平面PAC,平面平面ABC.
(2)由(1)知,,,平面PAC,
是直线BM与平面PAC所成的角,
且,
当OM最短时,即M是PA的中点时,最大.
由平面ABC,,
,,
于是以OC,OB,OD所在直线分别为x轴,y轴,z轴建立如图示空间直角坐标系,
则,
,
设平面MBC的法向量为,直线MA与平面MBC所成角为,
则由得:.
令,得,,即.
则.
直线MA与平面MBC所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,又在直角坐标系中,曲线的参数方程为(t为参数).
(1)求曲线的直角坐标方程和曲线的普通方程;
(2)已知点在曲线上,点Q在曲线上,若的最小值为,求此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,,是的中点.
(1)求证:平面;
(2)求二面角的余弦值;
(3)试问线段上是否存在点,使与面所成角的正弦值为?若存在,求出此时的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设曲线上一点到焦点的距离为3.
(1)求曲线C方程;
(2)设P,Q为曲线C上不同于原点O的任意两点,且满足以线段PQ为直径的圆过原点O,试问直线PQ是否恒过定点?若恒过定点,求出定点坐标;若不恒过定点,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题错误的个数是( )
①在中,是的充要条件;
②若向量满足,则与的夹角为钝角;
③若数列的前项和,则数列为等差数列;
④若,则“”是“”的必要不充分条件.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com