精英家教网 > 高中数学 > 题目详情
(2013•成都一模)已知
a
=(cosx+sinx, sinx), 
b
=(cosx-sinx, 2cosx)
,设f(x)=
a
b

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
π
4
π
4
]
时,求函数f(x)的最大值及最小值.
分析:(Ⅰ) 利用三角函数的恒等变换化简函数的解析式为
2
sin(2x+
π
4
)
,从而求得f(x)的最小正周期.
(Ⅱ) 根据x得范围求出2x+
π
4
的范围,由正弦函数的定义域和值域求出f(x)的最值.
解答:解:(Ⅰ)∵f(x)=
a
b
=(cosx+sinx)•(cosx-sinx)+sinx•2cosx
=cos2x-sin2x+2sinxcosx=cos2x+sin2x=
2
(
2
2
cos2x+
2
2
sin2x)
=
2
sin(2x+
π
4
)

∴f(x)的最小正周期T=π.
(Ⅱ)∵-
π
4
≤x≤
π
4
,∴-
π
4
≤2x+
π
4
4

∴当2x+
π
4
=
π
2
,即x=
π
8
时,f(x)有最大值
2

2x+
π
4
=-
π
4
,即x=-
π
4
时,f(x)有最小值-1.
点评:本题考查三角函数的恒等变换及化简求值,正弦函数的周期性、定义域和值域,化简函数的解析式为
2
sin(2x+
π
4
)

是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•成都一模)某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本500万 元,生产与销售均以百台计数,且每生产100台,还需增加可变成本1000万元.若市场对该 产品的年需求量为500台,每生产m百台的实际销售收入近似满足函数R(m)=5000m-500m2(0≤m≤5,m∈N)
(I)试写出第一年的销售利润y(万元)关于年产量x单位:百台,x≤5,x∈N*)的函数关系式;
(说明:销售利润=实际销售收人一成本)
(II )因技术等原因,第一年的年生产量不能超过300台,若第一年人员的年支出费用u(x)(万元)与年产量x(百台)的关系满足u(x)=500x+500(x≤3,x∈N*,问年产量X为多少百台时,工厂所得纯利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)如图,在△ABC中,
AH
BC
=0
且AH=1,G为△ABC的 重心,则
GH
AH
=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)如图,矩形 ABCD 中,BC=2,AB=1,PA丄平面 ABCD,BE∥PA,BE=
1
2
PA,F 为PA的中点.
(I)求证:DF∥平面PEC
(II)记四棱锥C一PABE的体积为V1,三棱锥P-ACD的 体积为V2,求
V1
V2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)已知函数f(x)=
x2-x+1,x∈[1,2]
2x-1,x∈(-∞,1)∪(2,+∞)

(I)解关于x的不等式f(x)≤1;
(II)若1≤x≤2,判断函数h(x)=2xf(x)-5x2+6x-3的零点个数,并说明理由.

查看答案和解析>>

同步练习册答案